3 车辆感知共享
MEC部署车辆感知共享功能,可将具备环境感知车辆的感知结果转发至周围其他车辆,用于扩展其他车辆的感知范围。也可以用于Seethrough场景,及当前车遮挡后车视野时,前车对前方路况进行视频监控并将视频实时传输至MEC,MEC的车辆感知共享功能对收到的视频进行实时转发至后方车辆,便于后方车辆利用视频扩展视野,有效解决汽车行驶中的盲区问题,提高车辆的驾驶安全。
在此场景中,MEC提供传感信息、视频流等信息的转发功能,需要保证低时延、大带宽的通信能力。在See-Through 应用场景中,需要对跨基站、跨MEC的业务连续性提供必要支持。配置了车载传感器/摄像头和C-V2X通信模组的车辆可向其他车辆共享自身传感信息,仅配置通信模组的车辆可接收其他车辆共享的传感信息。
4 场景小结
在多车与MEC协同交互场景中,多个车辆与部署在MEC上的服务进行交互,无需路侧智能设施参与。典型场景对MEC的能力要求如表3。
表3 多车与MEC协同交互场景对MEC能力要求
多车与MEC及路侧智能设施协同交互场景
1 场景概述
在C-V2X应用中,匝道合流辅助、智慧交叉路口、大范围协同调度等功能可通过多车、路侧智能设施及MEC进行协同交互实现。应用场景如图6所示:
图6 多车与MEC及路侧智能设施协同交互场景示意图
2 匝道合流辅助
MEC部署匝道合流辅助功能,在匝道合流汇入点部署监测装置(如摄像头)对主路车辆和匝道车辆同时进行监测,并将监测信息实时传输到MEC,同时相关车辆也可以将车辆状态信息发送至MEC,MEC的匝道合流辅助功能利用视频分析、信息综合、路况预测等应用功能对车、人、障碍物等的位置、速度、方向角等进行分析和预测,并将合流点动态环境分析结果实时发送相关车辆,提升车辆对于周边环境的感知能力,减少交通事故,提升交通效率。
在此场景中,MEC提供用于监测信息分析及环境动态预测的计算能力,以及低时延、大带宽的通信能力。车辆可通过Uu通信模式与MEC直接交互,或通过PC5通信模式经RSU与MEC进行交互。
3 智慧交叉路口
MEC部署智慧交叉路口功能,交叉路口处的路侧智能传感器(如摄像头、雷达等)将路口处探测的信息发送至MEC,同时相关车辆也可以将车辆状态信息发送至MEC。MEC的智慧交叉路口功能通过信号处理、视频识别、信息综合等应用功能对交叉路口周边内的车辆、行人等位置、速度和方向角等进行分析和预测,并将分析结果实时发送至相关车辆,综合提升车辆通过交叉路口的安全性和舒适性;同时MEC的可以通过收集和分析相关信息,对交通信号灯各相位配时参数进行优化,提高交叉路口的通行效率。
在此场景中,MEC提供用于路侧感知信息分析及路况动态预测的计算能力,以及低时延、大带宽的通信能力。车辆可通过Uu通信模式与MEC直接交互,或通过PC5通信模式经RSU与MEC进行交互。
4 大范围协同调度
MEC部署大范围协同调度功能,可在重点路段、大型收费口处借助视频传感信息,通过MEC进行路况分析和统一调度,实现一定范围内大规模车辆协同、车辆编队行驶等功能。或在城市级导航场景中,MEC根据区域车辆密度、道路拥堵严重程度、拥堵节点位置以及车辆目标位置等信息,利用路径优化的算法对车辆开展导航调度,避免拥堵进一步恶化。
在此场景中,MEC收集多种传感信息及大量车辆状态信息,提供海量数据处理、综合路径规划等计算能力,提供各类综合信息的存储能力,并提供与中心云平台进行交互的能力。此外,在大范围导航规划应用中,MEC还应提供对跨基站、跨MEC业务连续性的必要支持。MEC的部署位置可根据接入用户数和服务范围灵活选择。在网络部署了MEC及相应的功能服务后,具备对应通信模组的车辆可以直接使用此类服务。
5 场景小结
在多车与MEC及路侧智能设施交互场景中,多个车辆、路侧智能设施与部署在MEC上的服务进行交互。典型场景对MEC的能力要求如表4。
表4 多车与MEC及路侧智能设施协同交互场景对MEC能力要求
未来工作
在未来工作中,工作组将从以下几方面开展工作,持续推动MEC与C-V2X融合发展。
一是推动从时延、带宽、计算能力、存储资源、开放与协同能力、移动性支持等指标对MEC能力进行简单参考性分级,以加强应用场景需求与MEC网络或硬件能力的对应与匹配,推进MEC与C-V2X融合场景分步应用与发展。
二是推动MEC与C-V2X融合的标准化工作,规范数据接口与服务流程,积极联合产业各方主体共同开展测试床建设,为MEC与C-V2X融合的场景功能、平台性能、应用部署等提供测试环境,尽快开展解决方案的验证性测试,并利用测试结果对未来技术与产业的发展提供支撑。
三是持续开展深入研究,从技术与标准化方案、产业现状与趋势、商业模式等角度进一步深入探讨MEC与C-V2X融合的发展路线,并进行总结和成果输出。
主要贡献单位