根据探测原理,激光雷达分为单线(二维)激光雷达和多线(三维)激光雷达。单线激光雷达仅通过一条扫描线进行旋转扫描,获取二维扫描范围内的深度信息,如德国 SICK 光电设备公司研发的 LMS 系列,在无人驾驶中常用于自动跟车行驶;三维激光雷达,通过综合多条扫描线旋转扫描的结果,得到空间范围内的深度信息,能够有效捕获目标的基本特征和局部细节,测量精度和可靠性很高,如美国Velodyne LiDAR 公司的 HDL 系列,常用于测距、测速和三维成像。
据粗略统计,目前共有80-100家公司从事与激光雷达相关的产业。而各自动驾驶公司又不愿意把鸡蛋放在同一个篮子里,都选择了好几个激光雷达厂商作为合资伙伴;甚至,在同一台测试车辆上将不同厂家激光雷达混用也不是新鲜事。
毫米波雷达工作在毫米波波段,频率在 30-300GHz 之间。具有体积小、质量轻、分辨率高、抗干扰能力强且便于安装的特点,能够精确测量目标的相对距离和相对速度。但是由于毫米波是重要的雷达频段,在很多场合会受到干扰。
按照测距原理,可以将毫米波雷达分为两类:1)脉冲式毫米波雷达,其基本原理与激光雷达相似,由于探测技术复杂、成本较高,很少用于无人驾驶;2)调频连续式毫米波雷达,具有穿透力强、精度高、稳定性高、抗干扰能力强的优势,能够在雨雪等恶劣条件下正常工作,而且结构简单、成本低廉,容易实现近距离探测。
超声波雷达工作在机械波波段,工作频率在 20KHz 以上。超声波雷达多用于测距,如下图所示,其基本原理是通过测量超声波发射脉冲和接收脉冲的时间差,结合空气中超声波的传输速度计算相对距离。超声波测距的优势主要有四点:对恶劣天气不敏感,穿透性强、衰减小;对光照和色彩不敏感,可用于识别透明和漫反射性差的物体;对外界电磁场不敏感,适用于存在电磁干扰的环境;原理简单、制作方便、成本较低,容易进行市场推广。但是超声波雷达也存在很大的不足,测距速度无法与光电测距和毫米波雷达测距相比,而且无法测量方位,应用领域受限。
雷达传感器对目标信息的感知来源于自身发送的电磁波。相比被动传感器而言,雷达受外界环境影响小,获取的深度信息可靠性高, 测距范围和视角大、准确度高。另外,雷达每帧接收的点云数据量远小于摄像头记录的图像信息,更能满足无人驾驶对实时性的需求。
无人驾驶感知过程中,毫米波雷达和超声波雷达的主要作用即为测距和测速,目前在盲点探测、自适应巡航、前/后方碰撞预警等技术中应用较为广泛。除了距离和速度,激光雷达还能够较为准确地获取目标的形状、深度等信息。随着激光雷达性能的提高,相应的激光雷达感知技术也在不断发展。目前常用的感知技术主要有:障碍物检测与跟踪、路面检测、三维重建等。
目前大部分无人驾驶车辆仅依靠视觉感知和雷达感知,已经能够完成绝大多数交通环境感知任务,因此往往忽略了听觉感知,很多无人驾驶车辆甚至是“聋子”。然而在人类驾驶员开车时,交通环境中有许多声音也会携带重要信息,例如喇叭、警笛等,这些信息能够帮助驾驶员做出即时反应,包括改变车辆行驶速度和行驶方向等。无人驾驶车辆同样需要对环境中的声音有所感知并做出反应,这些声音一般无法通过摄像头或雷达获取,而是需要开发车辆的“耳朵”,让听觉传感感知系统能够真正发挥作用。
四、定位及导航技术
无人驾驶的基础是自主导航,不仅需要获取车辆与外界环境的相对位置关系,还需要通过车身状态感知确定车辆的绝对位置,因此定位与导航也是环境感知的关键技术之一。
无人驾驶车辆的位置数据不可能脱离感知态势的基准(常说的坐标系)而独立存在,不同的基准对应的车辆定位表现结果有很大差异。目前在无人驾驶中常用的基准包括:大地坐标系(WGS-84/ CGCS2000)、摄像机坐标系、图像坐标系、雷达坐标系、驾驶员认知坐标系等。选定基准之后,将车身姿态、周边环境和地图等信息都进行映 射并标注,生成基于这些坐标系的一张或多张图上。在这些图中,基于驾驶员认知坐标系的驾驶态势图能够更好地体现选择注意性,可以与车辆实现同步移动。
卫星导航系统都由空间段(导航卫星)、地面段(地面观测站) 和用户段(信号接收机)三个独立部分组成,如图所示。卫星导航的基本原理是测量已知位置的卫星到用户接收机之间的距离,并综合多颗卫星的数据计算出用户所在地理位置信息。
目前主要有GPS、北斗卫星导航系统、GLonASS 和 GALILEO四大全球卫星导航系统,我国常用的为 GPS 和北斗卫星导航系统。
GPS 是由美国国防部研制的全球首个定位导航服务系统,空间段由平均分布在 6 个轨道面上的 24 颗导航卫星组成,采用 WGS-84 坐标系;北斗卫星导航系统是中国自主研发、独立运行的全球卫星定位与通信系统,是继美国的 GPS、俄罗斯的 GLonASS 之后第三个成熟的卫星导航系统,空间段包括 5 颗静止轨道卫星和 30 颗非静止轨道卫星, 采用我国独自建立使用的 CGCS 2000 坐标系。这两种导航系统都可在全球范围内全天候、全天时为用户提供高精度、高可靠的定位、导航和授时服务,北斗卫星导航系统拥有更多的地球同步轨道卫星,还兼具短报文通信能力。
卫星导航定位技术按照定位方式分为单点定位技术和相对定位技术:单点定位是根据单独一台信号接收机的观测数据确定用户绝对位置的方式,容易受到系统性偏差的影响;相对定位是利用两台以上接收机的观测数据来计算观测点相对位置的方法,定位精度较高。相对定位又分为静态定位和动态定位两种类型,其中实时动态定位 RTK 技术是一种新的常用的卫星定位测量方法。
RTK 是一种基于载波相位观测值的定位技术,利用了参考站和移动站之间观测误差的空间相关性。与以前的静态定位和动态定位不同,RTK 无需事后结算即可在野外实时得到厘米级的定位精度,成为卫星定位应用的重大里程碑。RTK 属于广域定位技术,对天气状况和周边障碍物不敏感,但还是存在几点问题:1)初始化时间较长,主要受到卫星数、电离层、多路径等综合影响;2)工作距离短,基站覆盖范围一般不超过 15km;3)对卫星数量需求较高,在 6 颗以上卫星时作业较为可靠;4)存在信号失锁,卫星信号常常在隧道、高楼等严重遮挡的环境下失效。这些技术缺陷限制了 RTK 技术的应用,网络 RTK(又称 COS)应运而生。网络 RTK 是由多个基站组成的网络,通过将数据统一传送至网络服务器,并由服务器根据移动站和网络中基站的位置关系从最近的基站发送数据,或者在移动站附近虚拟出基站信息进行差分解算,从而提高移动站与基准站的误差相关性,获得高精度的定位结果。
惯性导航系统(简称惯导)由陀螺仪和加速度计构成,通过测量 运动载体的加速度和角速率数据,并将这些数据对时间进行积分运算,从而得到速度、位置、姿态和航向。惯导以牛顿力学定律为基础,工作原理是根据陀螺仪的输出建立导航坐标系并给出航向和姿态角,再根据加速度计的输出解算运动载体,实现惯性参考系到导航坐标系的转换。惯导属于推算导航方式,即在已知基准点位置的前提下根据连续观测推算出下一点的位置,因而可连续测出运动载体的当前位置。
惯性导航系统能够提供包括水平姿态、方位、速度、位置、角速度和加速度等的全面的导航信息,而且数据更新率高、连续性好、噪点低、短期精度和稳定性高。由于惯导是一种不依赖于外部信息、也不向外辐射能量的自主式导航系统,它不受外界电磁干扰的影响,具有全天候、全时段、全地域的工作特性。
由于导航信息是根据积分计算所得,惯导也存在其固有缺陷:定位误差会随时间而增大,数据的长期精度较低,而且无法获取时间信息。另外,惯导在每次使用之前需要较长时间的初始化,在无人驾驶过程中如果出现断电等突发状况,往往需要重新初始化。交通环境复杂多变,单一的导航系统往往会受限于自身的不足而无法确保精准定位和导航,因此当前的无人驾驶车辆大多采用GPS/BDS + INS 的组合导航方式。
姿态和状态感知无人驾驶车辆环境感知系统对车体的感知包括两部分:车身姿态感知和车身状态感知。姿态感知和状态感知对应的车辆信息不同,信息来源也有所差异。
无人驾驶对定位导航系统的性能有一定的要求,需要通过测试得到性能指标数值作为衡量依据。测试指标一般包括:1)首次定位时间,用于测试接收终端搜索信号的速度;2)定位测速精度,一般包括水平和高程定位精度;3)失锁重捕时间,能够反应接收终端在信号失锁后恢复定位的快慢;4)跟踪灵敏度,主要评估定位状态下接收机维持定位精度所需的最小信号功率;5)捕获灵敏度,代表了失锁状态下接收机捕获弱信号的能力。
实际驾驶时,车辆在不同场景下对导航系统的定位性能需求不同, 例如,正常环境下需要关注的指标为跟踪灵敏度,但是在隧道等信号遮挡严重的环境中更需要关注捕获灵敏度。因此导航系统的性能测试一般会有针对性地设置特定场景。
数字地图是以数字形式将纸质地图的要素存储在计算机上,并可以显示在电子屏幕上的地图。数字地图能够表示远大于纸质地图的信息量,可以进行任意比例、任意范围的绘图输出,而且地图上的内容易于修改、组合和拼接。数字地图主要有六个特点:1)快速存取和显示;2)可以动画形式呈现;3)地图要素可分层显示;4)图上的长度、角度、面积等要素可自动测量;5)可进行传输;6)利用 VR(Virtual Reality,虚拟现实)技术可将地图立体化、动态化。