Apollo最新研究成果,城市动态场景中的LiDAR定位框架系统
当下,不断变化的出行环境对自动驾驶定位系统提出了更严峻的挑战,刚刚取得了加州DMV路测MPI第一名好成绩的百度Apollo公布了最新研究成果:鲁棒LiDAR定位系统[1]。该系统由百度自动驾驶技术部—地图定位团队的工程师和研究员们共同打造,使用LiDAR惯性里程计实现的航位推算,在不断变化的城市场景中实现鲁棒的定位。
本次研究提出了基于激光惯性里程计辅助的激光定位系统,解决了因施工、修路等不断变化的城市场景中,定位地图不稳定造成的定位系统失效的问题,同时提出了有效的定位地图更新解决方案。
该系统中,定位框架使用了来自LiDAR全局匹配和LiDAR惯性里程计互补模式的信息,以实现精确和平滑的定位。这项最新的研究成果可以使定位系统更加鲁棒和准确,尤其是在动态变化的城市场景中效果显著。
为了实现自动驾驶车辆的自主导航,目前普遍流行的方法是精确定位,但精确定位系统不仅复杂,而且在动态变化的环境下也难以实现。以往的实践表明,使用现有技术可以克服环境中的某些特定变化,例如少量的路面修补、水坑、雪堆等,然而基于LiDAR地图匹配的车辆定位模块的失效问题,仍然是最具挑战的问题之一。
▲上图在顶部显示了在线LiDAR数据(棕色)和由LiDAR惯性里程计构建的Submap。中间部分给出了在定位地图中标注的由环境变化检测模块估计的每个单元中存在变化的概率。底部显示了:「A」以及「B」不同时期的现场对比;「C」定位结果的视觉对比:绿色(有LIO)与红色(无LIO)与蓝色(真值);「D」放大的环境变化检测结果;「E」通过加入新的LiDAR数据更新后的地图。
在这项工作中,Apollo研究人员结合LiDAR惯性里程计(LIO)和基于匹配的全局LiDAR定位,在位姿图优化框架中融合了两个模块的测量数据。考虑到地图匹配和里程计方法的互补特征,该框架构成了一套可以克服环境变化和地图错误的鲁棒定位系统,同时可以提供精确的全局定位结果。
基于激光惯性里程计辅助的激光定位系统,由LiDAR惯性里程计(LIO)、LiDAR全局匹配(LGM)、基于位姿图的融合(PGF)和环境变化检测(ECD)四个模块组成。
LGM是一种全局定位方法,它将在线LiDAR扫描与预先构建的地图相匹配,并进行3自由度(x,y,偏航)估计。其他3自由度(横滚、俯仰、高度)可以通过读取IMU重力测量数据和数字高程模型(DEM)地图来估计,一旦我们成功地进行水平定位。另外两个模块LIO和PGF则根据求解不同的最大后验概率(MAP)估计问题而建立。
在定位系统中,LiDAR惯性里程计在一些具有挑战性的情况下,例如,由于道路建设或恶劣天气导致的地图过期或环境变化,对提高定位性能起着重要的作用。
LiDAR里程计估算帧之间的相对姿态,同时帮助构建一个称之为Submap的局部地图。Submap会根据LiDAR扫描不断更新,始终保持最新状态。该定位系统充分利用了Submap,平滑了预估的轨迹,同时保证了系统在极端情况下的可靠性。
系统中LiDAR惯性里程计的实现遵循了W. Hess[2]等人的工作理论,同时采用了一些重要的扩展来帮助提高其精度。
首先,我们采用三维占位网格代替二维占位网格的方法实现了六自由度的全方位里程测量。这个扩展允许它在三维环境中的应用,如停车场结构或天桥,并简化了下面提到的IMU预积分。
其次,该系统结合了惯性信息以提供运动预测和帧之间的相对约束。更重要的是,惯性信息的加入使我们能够对移动平台引起的LiDAR扫描失真进行运动补偿。为了降低计算时间,我们在实现中采用了预积分方法。
第三,考虑到这些场景中来自车道或路面标记的丰富信息,在占据栅格配准过程中,我们加入LiDAR反射值,作为对每个网格单元占用概率的补充,并提供了有价值的环境纹理信息。
最后,我们在求解非线性优化问题时,采用由粗到细的方法,在我们占据栅格的实现中引入多分辨率。这不仅有助于网格配准的收敛,而且可以有效地控制计算复杂度,实验结果验证了这一点。
我们将LiDAR惯性里程计描述为一个MAP估计问题。给定前一个状态,Submap更新到最近的帧,以及量测,状态的后验概率是:
首先,我们将三维多分辨率Submap投影到地平面上,类似于定位地图构建过程;然后得到与系统预先构建的定位地图格式相同的2D Submap。给定系统的定位输出,就可以将Submap覆盖到预先构建的地图上,并通过逐单元比较来确定环境变化的发生。
Apollo-SouthBay数据集收集于美国旧金山湾区,覆盖380.5公里的行驶距离。
内部数据集包括了中国北京各种具有挑战性的城市场景,特别是有地图错误或环境变化的场景,如地图过期(渐进环境变化),道路施工、封闭车道、交通密集等。
Apollo车辆平台配备了Velodyne HDL-64E 360度LiDAR和NovAtelPwrPak7D-E1 GNSS RTK接收器,该接收器集成了双天线和Epson EG320N IMU,并安装于林肯MKZ车辆中。
评估中使用的位姿真值是使用离线LiDAR SLAM方法生成的,通常表示为大规模全局最小二乘优化问题。
总体而言,在所有指标下,该定位系统都可与[5]相媲美,并且在Apollo-SouthBay数据集的大多数数据序列中获得了更好的最大水平和偏航均方根误差,特别是在具有挑战性的场景中展示了新设计的好处。
总的来说,通过使用新的LiDAR惯性里程辅助框架,我们的性能比[5]有所提高。为了进一步说明所获得的好处,下图显示了数据集中几个帧的系统输出示例。
结果表明,新增加的LiDAR惯性里程计模块可以有效地辅助定位系统,防止由于LiDAR全局匹配失败而引起的定位误差。考虑到道路建设中的不时变化,Apollo研究人员还提出了一种环境变化检测方法,以找出地图应在什么时候和什么部分进行及时更新,从而可靠地支持大型自动驾驶车队,在拥挤城市街道中的日常运营,这些优势使得我们的系统非常适合商业化部署。
在探索自动驾驶领域发展的路上,百度Apollo始终坚持通过独立自主的科研创新,协同百度AI生态体系,通过致力于顶尖的学术研究以及深入可行的落地应用,加速全球自动驾驶产业的智能化进程。
参考文献:
-
汽车测试网V课堂
-
微信公众号
-
汽车测试网手机站
编辑推荐
最新资讯
-
厂商要多努力,才能让用户听起来毫不费力?
2024-11-22 17:10
-
TOP30!海克斯康入选2024福布斯中国数字科
2024-11-22 15:25
-
揭秘国产装备制造厂商的成功秘籍:好耐电子
2024-11-22 15:24
-
一文详解安全分析方法STPA:以自动紧急制动
2024-11-22 15:20
-
选对涉氢压力表:守护涉氢场所安全的关键一
2024-11-22 15:19