索尼第一辆电动车Vision-S全面剖析
索尼一开始就是奔着量产车而来的,如果只是概念车,完全不必劳驾麦格纳,博世和本特勒可以轻松完成概念车。麦格纳斯太尔也从不为人打造概念车,麦格纳斯太尔就是代工厂。
博世与本特勒的电动汽车2.0包括了底盘、基础的E/E架构、博世的三合一电驱动、电池Pack系统、热管理系统、感应充电、车架、撞击管理系统。
柔性框架上的车身具备高扩展性,能覆盖从B级车到E级车的大部分车型,轻量化、可扩展的车架,采用挤压铝型材,可根据不同车型和车身,灵活调整长度和宽度,通过冷连接(无需焊接)技术,是实现高扭转刚度和最佳碰撞性能的基础。
模块化的电池包解决方案,具备出色的能量密度和安全性,该设计能抵抗所有碰撞形式及满足相关法规要求,采用铝制型材车架结构,灵活可扩展,集成式电池冷却,保持电池最佳性能,延长电池寿命。
集成式碰撞管理满足最严格的安全法规要求,专为纯电动汽车优化的轻量化碰撞设计,新吸能部件为电池系统提供更好的保护,碰撞管理系统满足侧面柱碰撞和前端侧角碰撞要求。
模块化电动汽车前/后桥,打造最佳驾乘体验和操纵性,前后悬架模块搭配高度集成式电动驱动单元,得益于型材在纵向和横向的剖面长度,副车架具备模块化属性,每个副车架都考虑了NVH要求 (噪声,振动,声振粗糙度)—优化的橡胶衬套概念,经隔音处理的副车架和附加的电子驱动单元,实现最佳NVH性能。
电子架构由博世提供,是博世先进的Zonal架构,远比特斯拉的传统架构要先进。
自动驾驶方面,索尼Vision-S有40个传感器,包括18个摄像头,6个毫米波雷达、12个超声波雷达和4个激光雷达。
18个摄像头中共有三个型号,分别是230万像素的IMX390、540万像素的IMX490和30万像素的ToF IMX456。IMX490性能优异,EMVA标准下动态范围可达140分贝,是目前动态范围最广的摄像头,还达到了ASIL-D级功能安全,也是首个取得ASIL-D级的摄像头,能够祛除LED频闪。AD10比特精度可达40帧每秒,12比特可达30帧每秒,像素分辨率2896*1876。对比200万像素,明显提高了FOV。
在摄像头解串行方面,索尼不必求助美信的GMSL或德州仪器的FPD-link,索尼自己有类似的技术,即GVIF。
日本丰田特别是雷克萨斯也是使用索尼的GVIF芯片,日本企业一贯喜欢垂直供应链,能自己做的绝不假手他人,而中国和欧美企业则相反,能采购的一定从外采购,绝不自己做。GVIF2中的CXD4960ER-W、CXD4961ER-W、CXD4962ER-W、CXD4963ER-W、CXD4960GG-W、CXD4963GG可以支持4百万像素60帧每秒,因此支持索尼汽车的540万像素40帧每秒是没有问题的。
索尼半导体为索尼汽车提供解串行芯片外,还有音频CODEC、4G、蓝牙、WLAN通讯模块,也为索尼汽车上的AR-HUD提供PGU和全息光波导光机。索尼半导体还能生产激光二极管,也拥有MEMS晶圆厂。此外索尼参股的JDI能提供索尼汽车所需要的所有显示屏。
索尼的主视觉处理器应该是瑞萨的R-CAR V3U,因为它有针对双目的硬线对应。日本企业、奔驰和博世是双目的死忠,即便激光雷达大量普及,也会坚持使用立体双目摄像头,并且会是主传感器。立体双目在像素密度、帧率、功耗、体积、技术成熟度、有效距离方面仍然超过激光雷达。索尼的540万像素双目在HFOV40度情况下有效距离可轻松达到300米,每秒40帧,通常机械激光雷达的帧率与水平角分辨率是矛盾的,帧率越高,角分辨率越低,传统机械激光雷达的帧率在5-20Hz之间可调,一般默认是10Hz,意味着0.1秒的延迟无法避免。性能最强的Luminar的帧率默认也是10Hz,索尼的摄像头是其4倍帧率,延迟减少了很多。
四大自动驾驶芯片厂家只有瑞萨的主业是汽车半导体,因此对车规安全重视程度最高,目标是ASIL-D级。V3U内部框架如上图,采用8核A76设计,但也不是像特斯拉那样简单堆12个A72,它使用了ARM的Corelink CCI-500,即Cache一致性互联。它提供处理器集群之间的完整Cache一致性,比如 Cortex-A76 和 Cortex-A55,而且可以实现 Big.LITTLE 处理。它还可为其他的设备(如 Mali GPU、网络接口和加速器)提供I/O一致性。实时锁步CPU是ARM的R52。
V3U视觉管线如上图,可以看到V3U有很多硬核计算机视觉模块,包括立体双目视差,稠密光流、CNN、DOF、STV、ACF等。功能方面包括图像格式化、目标追踪、车道检测、自由空间深度、场景标注、语义分割、检测分类等都具备,类似于Mobileye的全封闭算法了。
图像处理主要还是IMP-X5+,灵活性应该比Mobileye还是要高点。因为针对性比较强,也为了节约成本,降低功耗,瑞萨没有使用太昂贵的GPU,只是简单增加了一个低功耗GPU,即Imagination Technologies的PowerVR GE7400,1个着色器集群+32个ALU核心,算力只有38.4GFLOPS@600MHz。
考虑到成本因素,瑞萨没有使用尖端的7纳米,而是12纳米工艺,并且是从原瑞萨R-CAR H3的16纳米FinFET工艺升级到12纳米FFC工艺,一次性支出很少。但是论到AI性能,丝毫不次于那些5纳米芯片,瑞萨声称V3U达到了惊人的13.8TOPS/W的能效比,是顶配EyeQ6的6倍之多。
环视和侧视这些视觉处理关系不大,索尼可能使用了英伟达的Xavier,当然至少需要两片。
索尼的电子倒车镜上有多达4个摄像头。
保险杆下方就是激光雷达,索尼完全有能力自制激光雷达,并且是先进程度不次于任何一家激光雷达厂家,因为Flash激光雷达本质上就是个ToF相机,索尼的ToF传感器优势明显,做激光雷达更是手到擒来,易如反掌。从外型上看,这个激光雷达就是Flash激光雷达。
上图为全球第二大ToF传感器厂家意法半导体对ToF相机原理的解释。
上图为知名Flash激光雷达厂家Ouster的产品实物,就是一个放大版的ToF相机,只是光学镜头远比手机用的ToF相机要大。
现在Flash激光雷达厂家用的SPAD阵列像素大约只有1-2万,而索尼的试验产品,已经达到120万像素,是传统Flash激光雷达的100倍。需要指出,SPAD阵列只是检测光反射部分,可以用于任何类型的激光雷达,只是目前Flash激光雷达必须用SPAD阵列。
在2021年2月13日,索尼发布了堆叠型直接ToF传感器,也就是SPAD阵列,这是索尼针对汽车用激光雷达发布的首个产品。
它最强大的地方是最大有效距离高达300米,通常Flash激光雷达是30-50米,当然这和Flash用的VCSEL功率密度低也有关系,提高VCSEL功率密度可以将有效距离增加到200米,但成本增加十几倍。
索尼Vision-S的座舱与本田e电动车座舱几乎没有区别。但屏幕要更大,两边的屏幕可能是15英寸,中间的可能是12英寸。两边的屏幕分辨率可能是2100*900。后排还有两个10.1英寸屏幕。
可以任意在几个屏幕间拖动,包括后排屏幕。
副驾驶处的屏幕可无线连接索尼Playstation,将游戏机画面投射上去。
ToF深度相机一个用来监测驾驶员的身体动作,判断驾驶员的健康状况。
最令人称奇的另一个ToF深度相机能够识别唇语,当然索尼Vision S的座舱也能语音识别。
这样配合传统的语音识别,准确率会更高,当然目前可能只能针对日语和英语。
索尼计划在2021年3月28日推出基于Vision S的量产原型车,按日本厂家的一贯风格,概念车与量产车几乎没有多少差别,让我们拭目以待吧。
- 下一篇:MathWorks:详解AI五大发展趋势
- 上一篇:大众标准电芯对行业的冲击
-
汽车测试网V课堂
-
微信公众号
-
汽车测试网手机站
编辑推荐
最新资讯
-
Discount Tire带来直观易懂的轮胎评测体系
2025-01-15 15:15
-
标准动态||中国汽车工程学会标准项目清单
2025-01-15 15:13
-
NI与蔚华科技携手,共建亚太区首座功率半导
2025-01-15 15:10
-
海克斯康(Hexagon)推出虚拟试驾X测试自动
2025-01-15 15:08
-
汽车NVH仿真:打造静谧驾驶体验的关键
2025-01-15 08:27