开轮式赛车俯仰位置的空气动力学

2021-04-12 16:30:19·  来源:AutoAero  
 
F1是由国际汽车联合会(FIA)组织的最高水平的年度赛车比赛。空气动力学是F1赛车设计中的一个重要因素,它将直接影响赛车的性能,是比赛成功的关键。由于F1赛车的
F1是由国际汽车联合会(FIA)组织的最高水平的年度赛车比赛。空气动力学是F1赛车设计中的一个重要因素,它将直接影响赛车的性能,是比赛成功的关键。由于F1赛车的特殊结构,其空气动力特性与一般乘用车有很大的不同。F1赛车的速度非常高,它的空气动力学造型必须设计良好,以产生足够的负升力,以确保其运行稳定性。F1赛车通常是在高速模式下,起伏的俯仰角经常变化,因为道路或其他原因,导致空气动力特性的变化将直接影响驾驶能力和稳定性,甚至危及汽车和司机的安全。空气动力特性是目前汽车研究的热门领域,许多研究成果已应用于乘用车,它是发达国家汽车技术的核心技术之一。国内对F1赛车气动特性的研究主要集中在保持赛车姿态不变的情况下,对不同俯仰角下的气动特性和尾迹变化的研究较少。然而,俯仰角由于路面的起伏而不断变化,气动特性的变化将直接影响操纵稳定性。透彻理解不同俯仰角下的流动特性变得极其重要。本文研究了F1赛车模型在不同俯仰角度下的气动特性。从气动特性分析到流场分析,全面分析了气动性能的变化,为更好地设计赛车提供经验。

1  数值模拟

1.1  模型概述及俯仰角仿真方法


图1为F1赛车的数字仿真模型。

如图2所示,在计算域中,前后轴中心平面与计算域底部的交线为旋转轴,图中的Y轴。使车身(包括车轮和悬架)绕Y轴旋转顺时针)的β角定义为车身俯仰角。在俯仰角度的选择上,本文选取了0°、0.5°、1°、1.5°和2°。图3分别为不同俯仰角度下的车身姿态。


开轮式赛车俯仰位置的空气动力学
图1 F1赛车的数字仿真模型


开轮式赛车俯仰位置的空气动力学1
图2 车身旋转示意图

开轮式赛车俯仰位置的空气动力学2
图3 不同俯仰角度下车身姿态

1.2  数值模拟

数值模拟的计算区域为长方体,如图4所示。计算域的长度是车辆的8倍,宽度是车辆的11倍,高度是车辆的9倍。在图4中,a、b、c、d、e、f区域的边界逐渐向模型靠近,网格的大小也逐渐变小,网格的总数是四千万。模拟持续时间为100000个时间步长(1.283秒)。车体坐标系规定气动参考点(车体纵向对称面与地面交点为直线L,前后轴车体对称面与直线L交点)为原点。

开轮式赛车俯仰位置的空气动力学3
图4 计算域示意图

利用CFD商业软件PowerFlow进行了计算,本文不使用EXA公司的PowerFLOW软件的最佳实践,因为它的特殊计算模型。边界条件设置如表1所示。

表1 边界条件
开轮式赛车俯仰位置的空气动力学4

2  结果分析

2.1  力系数分布


图5和图6是不同俯仰角下阻力系数(CD)和升力系数(CL)的分布。从图中可以看出,随着俯仰角的增大,阻力系数减小,空气升力增加。如图7所示,汽车分为五个部分:前翼、后翼、车轮、车身和底板。表2为不同俯仰角下各部分的阻力系数。从表中可以看出,阻力贡献由大到小依次是车轮、车身、后翼、前翼和底板。图8为各部件在不同俯仰角度下的阻力系数变化曲线。从图中可以看出,随着俯仰角的增大,前后翼的阻力减小,车身和车轮的阻力增大。主要原因是当俯仰角改变时,前后翼迎角发生变化,导致阻力系数降低。表3为不同俯仰角度下汽车各部分升力系数。图9是不同俯仰角度下汽车各部分升力系数的贡献直方图。图10为不同俯仰角下升力系数的变化曲线。从图中可以看出,负升力贡献主要来自底板、后翼和前翼,车轮和车身主要是提供升力。

开轮式赛车俯仰位置的空气动力学5
图5 不同俯仰角度下阻力系数的变化曲线

开轮式赛车俯仰位置的空气动力学6
图6 不同俯仰角度下升力系数的变化曲线

表2 不同俯仰角度下的阻力系数
开轮式赛车俯仰位置的空气动力学7

开轮式赛车俯仰位置的空气动力学8
图7 车身各部位示意图

开轮式赛车俯仰位置的空气动力学9
图8 不同俯仰角度下车身各部件阻力系数变化曲线

开轮式赛车俯仰位置的空气动力学10
图9 不同俯仰角度下赛车及其零部件的升力曲线

开轮式赛车俯仰位置的空气动力学11
图10 各部件升力系数随俯仰角的变化曲线

图11和图12为前后轴升力系数随俯仰角变化的曲线。从图中可以看出,前后轴升力系数随着俯仰角的变化而增大。

开轮式赛车俯仰位置的空气动力学12
图11 不同俯仰角度下前轴升力系数

开轮式赛车俯仰位置的空气动力学13
图12 不同俯仰角度下后轴升力系数

2.2  压力分布

图13是不同俯仰角度下汽车和尾翼的压力分布图。气流在前翼、头部和尾翼上形成了一个高压区。左右两侧压力呈对称分布;随着俯仰角的增大,尾翼的压力逐渐减小,从而可以减弱负升力,导致尾翼升力系数随着俯仰角的增大而增大。

图14为不同俯仰角度下汽车下表面的压力分布图。从图中还可以看出,汽车前翼、后翼和车身下表面的压力增大,升力也逐渐增大,底板压力明显增大,这与底板升力系数贡献显著增大的结果是一致的。上表面压力减小;下表面压力增加。因此,上、下表面的压差减小;随着俯仰角的增大,升力系数增大。

开轮式赛车俯仰位置的空气动力学14
图13 不同俯仰角度下汽车和尾翼的压力分布图

开轮式赛车俯仰位置的空气动力学15
图14 不同俯仰角度下汽车下表面的压力分布图

2.3  流场分布

图15为不同俯仰角度下中心对称面的速度剖面。从图中可以看出,在车的底部,前翼附近的气流速度随着俯仰角的增大而增大。

开轮式赛车俯仰位置的空气动力学16
图15 不同俯仰角度下中心对称面的速度剖面

前部离地间隙增大,后部离地间隙减小,流向底部的气流增加,而出流率减小,从而解释了地板升力系数的贡献随俯仰角的增大而急剧增大的现象,这也与图14中体底压力增大的趋势一致。同样,整车的升力也会增加。

结  论

1.随着俯仰角的增大,阻力系数逐渐减小。阻力系数的减小主要发生在前翼和后翼,主要原因是前翼和后翼的攻角发生了变化。

2. 负升力主要由前翼、后翼和底板提供。随着俯仰角的增大,上述三个分量的负升力逐渐减小,这是由于地面效应的减小。值得注意的是,当俯仰角达到2度时,底板的升力系数是非常明显的,主要原因是随着俯仰角的增大,扩压器与地面的距离越小,流动被阻塞,导致扩压器效应逐渐减弱,底压显著增大,升力系数增大。随着俯仰角的增加,车轮和车身总是促进升力的增加。

文献来源:
Zhang, Y., Yang, C., Wang, Q., Zhan, D. et al., “Aerodynamics of Open Wheel Racing Car in Pitching Position,” SAE Technical Paper 2018-01-0729, 2018, doi:10.4271/2018-01-0729.
分享到:
 
反对 0 举报 0 收藏 0 评论 0
沪ICP备11026917号-25