通过LMS-Techware软件包,可以比较MBS仿真和相应试运行的部件负载信号,该软件包能够确定曲线的一般特性以及相移和峰值负载偏差的相关性。峰值负荷偏差,特别是垂直方向表示模拟模型和试运行之间的发散力-位移曲线(如弹簧、阻尼器、二次弹簧)(图6-32)。
关于频率相关性,模拟和实验悬架负载的典型固有频率和PSD振幅应在垂直方向(车身:约1至1.5 Hz,底盘:约10至14 Hz)和水平方向(约20至30 Hz)上相互关联。
由于原始测量数据通常使用最大频率为50赫兹的低通滤波器进行预处理(这种滤波通常在记录数据后立即出现在测试轨道上),因此只需检查0至50赫兹的频率范围。使用低通滤波器的预处理有助于消除可能的混叠效果,并解释了道路模拟试验台的驱动功率有限。如果PSD在几赫兹范围内显示高振幅(与典型固有频率的偏差),则很可能存在混叠(图6-33)。
a) 对称类扫描与发生频率:对称类扫描用于评估荷载相对于其发生频率的分布,同时考虑荷载方向(张力或压缩力)和静态荷载的大小。
静态荷载(发生频率高)可在曲线的转折点或“前端”进行区分,而最大和最小荷载(发生频率低)可在最小循环次数下找到。这允许执行以下模型检查:
-
检查不同负载条件下的静态轴负载检查不同车辆高度水平控制设置(在道路上,越野)
-
通过创建车轮和减振器上的力的类扫描图来检查车轮和减振器负载之间的比率
-
检查减振器的力-位移曲线以确保适当的压缩力和回弹力
-
检查最大力和最小力的偏差(偏差可以指示MBS和试验车辆或车轴中的不同部件力-位移曲线(二系弹簧、阻尼器)。
b) 应力对与累积发生频率(图6-34):应力对图显示了荷载相对于其累积发生频率(所有荷载循环的总和)的双倍振荡幅度。与类扫描不同,不考虑平均值(例如静态预加载)。与类扫描图类似,模拟和实验结果的总体行为应该相互关联。在小的累积发生频率范围内可以发现高动态荷载。
如果曲线具有不同的最大累积出现频率,这表明模拟中的小振幅载荷数量与实验确定的结果不同。这意味着MBS模型中存在错误。这些误差可能是由于衬套或轴承刚度过大(橡胶衬套、车轮轴承)或数值求解过程的不正确调整造成的。
荷载引起的损伤是影响构件耐久性的重要参数。以力和力矩为输入参数,利用Miner损伤累积准则计算损伤。由于累积损伤的计算对载荷变化非常敏感,应力对作为载荷谱引起的单个相对损伤的函数,应作为MBS模拟和实验结果可比性的进一步参数进行评估。只要最大损伤值(X轴上的最终值)相差小于20%到30%,模拟和实验结果中的载荷就足够相似。大的力差和小的循环次数(由x轴上的小值表示)通常会导致损伤的差异,而这些差异无法由较小的载荷补偿(图6-35和6-36)。
由于载荷谱的变化只能针对具有相同斜率k的假定Wóhler曲线,因此计算的损伤是一个相对值。坡度k应尽可能接近荷载作用构件所用材料的坡度。应注意的是,10%的荷载增加(对于所有振幅)会使损伤增加1.1k倍(k=5ˇa系数为1.61)。
如果部件设计的车辆荷载是通过在某个虚拟路面(坑洞、路缘石等)上“驾驶”来计算的,则需要更复杂的模型。只有在极其精确的轮胎和路面模型可用时,才能提供精确的载荷数据。整车耐久性仿真尚处于研发阶段。因此,极限荷载工况和道路荷载的模拟通常不用于确定构件荷载。对于极端负载情况,每个原始设备制造商都使用自己经验证的值和负载数据。
当今车辆中越来越多的主动动力系统已经将正常驾驶员的标准工作范围扩展到线性车辆行为的界限之外。因此,有必要对现代车辆在线性和非线性范围内的动力学行为进行分析。在下面的段落中,描述了一个结构化的过程,该过程允许在运行条件下对车辆进行分析,直至并包括极限范围。这一过程也是车辆动力学系统发展的基础。以DIN/ISO所描述的车辆动态特性的评价方法为基础,采用系统论方法,使车辆的动态特性能够在期望的工作范围内得到描述。这种车辆行为描述在下文中称为“操控指纹”。