首页 > 汽车技术 > 正文

驾驶域计算平台架构核心软件和底层硬件梳理

2021-09-15 20:40:05·  来源:智驾最前沿  
 
二、底层硬件梳理
(一)底层硬件采用异构分布架构(以华为 MDC 为例)
智能驾驶域控制器是结合车辆线控平台和大量多类型外围传感器的核心部分,具有多样的接口类型、足够的接口数量和高性能等特点。多传感器数据融合、人工智能算法等技术对域控制器的接口和算力性能都有着更高要求,因此,域控制器需要采用集成多种架构芯片的异构多核芯片的硬件方案。
异构多核芯片硬件架构主要由具有AI单元、计算单元和控制单元三部分组成。
AI单元:为异构芯片硬件架构中算力最大的一部分,通过系统内核进行加速引擎和软硬件资源的分配、调度。AI 单元主要完成多传感器融合数据的分析和处理,输出用于规划、决策和控制的周围环境信息。目前,主流的 AI芯片可选架构有 GPU、FPGA、ASIC 等。
计算单元:基于多核CPU的计算单元具有主频高,计算能力强等特点,通过系统内核管理软件和硬件资源、完成任务调度。计算单元主要用于执行大部分自动驾驶相关的核心算法,整合多传感器融合数据完成路径规划、决策控制等功能。
控制单元:主要基于传统车辆控制器(MCU)完成车辆动力学横纵向控制任务,搭载基础软件平台的控制单元将各个车辆控制的功能软件连接起来实现车辆控制,同时,软件系统需要预留与智能车辆操作系统集成的通信接口。


域控制器核心底层硬件分类
以华为MDC为例,除了常见的MCU外,MDC计算平台内部包含了两个核心芯片:CPU芯片:鲲鹏920s,基于华为自研的ARM处理器,采用7nm制程,最大功耗55W;AI芯片:昇腾310,基于达芬奇AI架构,12nm制程,最大功耗8W,算力达到16TOPS(八位整数精度)。


华为MDC架构——底层硬件平台有AI芯片/CPU等构成
华为MDC计算单元内部包括四大模块:CPU模块、图像处理、AI处理、数据交换。其中数据交换模块主要负责其余各个模块的数据交互,图像处理模块主要用于把摄像头的原始数据处理成YUV格式或者RGB格式,此外AI处理模块和CPU模块主要功能如下:
AI处理模块(内置AI芯片):主要用来做AI计算,主要是CNN计算(卷积神经网络),可以做摄像头的AI处理,或者摄像头和激光雷达的前融合AI计算,内存64GB;
CPU模块(内置CPU芯片):主要提供整型计算,可以用来部署后融合、定位、规控等应用软件算法,内存是16GB。


华为MDC与上层应用架构图
注:CAN、ETH、GMSL 等皆为内部通信方式,一般来说 ETH(以太网接口)可以连接到 4G 网络,车联网系统等,CAN 接口可以对接底盘 ECU,包括转向和动力 ECU 等。
(二) CPU+ AI 芯片的三大流派
1.AI芯片的主要分类:GPU/FPGA/ASIC
GPU仍属于通用性芯片。它与传统CPU有明显差异,CPU需要很强的通用性来处理各种不同的数据类型,同时对逻辑判断有较高要求,因此CPU的内部结构异常复杂。而GPU面对的则是数据类型高度一致、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。
GPU采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache,而CPU不仅被Cache占据大量空间,而且还有有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU很小的一部分。


CPU VS GPU
ASIC属于定制化芯片,即应特定用户要求和特定电子系统的需要而设计、制造的集成电路。ASIC的特点是面向特定用户的需求,ASIC在批量生产时与通用集成电路相比具有体积更小、功耗更低、可靠性提高、性能提高、保密性增强、成本降低等优点。ASIC具有高性能、低功耗的优势,但它们包含的大部分算法——除了那些在软件内部处理器内核执行的——其余都是“冻结的”。
FPGA,是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,FPGA最大特点在于,可以配置它的可编程架构来实现研发人员需要的数字功能组合。
ASIC VS FPGA对比:
(1)用途:FPGA主要用于要求快速迭代或小批量产品;ASIC用于设计规模大,复杂度较高的芯片,或成熟度高,产量较大的产品;
(2)成本:小批量需求时,单片FPGA成本低于ASIC,随着产品量的增加,单片ASIC成本逐步降低;
(3)功耗:在相同工艺条件下,FPGA要大于ASIC;
(4)速度:FPGA内部是基于通用的结构,通用则导致冗余;ASIC是根据设计需求,最优化逻辑资源,并且做到最优布局走线,降低走线延迟;
(5)面积:定制化的电路设计和工艺使用ASIC面积小于FPGA;


不同类型芯片对比
1. 流派一:CPU+GPU+ASIC(英伟达、特斯拉、高通等为代表)
英伟达自动驾驶芯片采用CPU+GPU+ASIC架构。英伟达目前在全球自动驾驶芯片领域处于行业龙头地位,主要产品包括Xavier(2018年推出,已公布架构)、Orin(2019年推出,英伟达未曾披露内部架构)等,2021年推出ALTAN。
2018年发布的Xavier目前已成功量产,该款芯片主要有4个模块:CPU、GPU以及两个加速器ASIC。搭载的两个加速器ASIC分别为Deep Learning Accelerator(DLA) 和 Programmable Vision Accelerator(PVA)。从体型来看,占据最大面积的是GPU,其次是CPU,最后辅以两个专用 ASI,有助于优化能耗比。
2021年发布的Atlan将用于多家汽车制造商的2025年车型上,该款芯片主要也包括4个模块:全新Arm CPU核、GPU以及深度学习和计算机视觉加速器。
此外,它还将包括BlueField数据处理单元,该数据处理单元可提供广泛的高级网络、存储和安全服务,以支持自动驾驶汽车中的复杂计算和AI工作负载,该款处理器将提供每秒超过1000万亿次(TOPS)算力。


英伟达Xavier架构


英伟达Atlan架构
特斯拉自行设计的FSD算力高达144Tops,也采用CPU+GPU+ASIC架构。FSD包含着三种不同的处理单元,分别为负责图形处理的GPU、负责深度学习和预测的神经处理单元 NPU(ASIC),还有负责通用数据处理的中央处理器 CPU。特斯拉自行定制设计FSD芯片上的神经网络加速器(NPU),这是FSD芯片上最大的组件,也是最重要的逻辑部分。


特斯拉FSD架构
高通Snapdragon ride高阶产品预计采用的也是CPU+GPU+ASIC架构。2020年高通发布驾驶域芯片产品Snapegragon ride,该款产品分为三个系列:
(1)面向L1/L2级ADAS(具备AEB、TSR和LKA等ADAS功能)的底层硬件包括1个ADAS应用处理器(安全系统级芯片SoC),可提供30~60 TOPS算力;
(2)面向L2+级ADAS (具备HWA、自动泊车APA以及TJA等功能)的硬件支持为2个或多个ADAS应用处理器,所需算力要求约为60-125 TOPS;
(3)最高阶产品面向L4/L5级自动驾驶,配置的底层硬件为2个ADAS应用处理器+ 2个自动驾驶加速器ML(ASIC),最高可提供700TOPS算力,功耗为150W左右。


高通Snapdragon ride产品线
2. 流派二:CPU+ASIC(Mobileye、华为、地平线等为代表)
Mobileye在自动驾驶芯片领域具有强大竞争优势,2004年以来陆续推出基于ASIC架构的EyeQ系列芯片。Mobileye产品覆盖L1-L3级别的前装 ADAS,硬件产品主要是是基于 ASIC 架构的 EyeQ 芯片,该公司智能驾驶系统解决方案包括四个部分:EyeQ芯片、自动驾驶策略、安全的防护层 RSS、地图技术 REM。
截止目前,EyeQ系列芯片已发布五代。第一代产品EyeQ1算力约0.0044Tops,第二代产品EyeQ2算力约0.026Tops,功耗均为2.5w,这两款产品主要用于L1级自动驾驶。第三代产品EyeQ3是自行开发的ASIC架构,使用了4颗MIPS核心处理器、4颗VMP芯片,可以支持L2高级辅助驾驶计算需求。
2018年量产上市的第四代产品EyeQ4采用28nm工艺,使用了5颗核心处理器、6颗VMP芯片、2颗MPC核心和2颗PMA核心,最高可实现L4级自动驾驶功能。
最新一代芯片EyeQ5主要有4个模块:CPU、视觉加速期CVP(ASIC)、以及Deep Learning Accelerator(DLA) 和 Multithreaded Accelerator(MA)。从模块的大小来看,CPU 、CVP占据大头,其中CVP是针对很多传统计算机视觉算法设计的ASIC芯片。历史上,Mobileye一向以CV算法而闻名,同时因为用专有的ASIC来运行算法从而可以达到很低功耗。
不过Mobileye的ASIC芯片+算法系统是封闭的,对OEM和Tier 1来说就是黑盒,这也是被众多厂商诟病的主要原因,因为OEM和Tier 1不仅无法使用不同的算法来体现差异化竞争,而且还不能掌握这类核心算法。


Mobileye EyeQ5方框图
华为是我国本土智能驾驶芯片领域综合实力最强的龙头之一,针对不同应用场景,2021年初正式推出4款MDC产品。(1)MDC300F,目标应用场景为港口、矿山、园区物流等领域的商业车或作业车,算力约64Tops;(2)MDC210,目标应用场景为L2+功能场景的乘用车,算力约48Tops;(3)MDC610,目标应用场景为L4+功能场景的乘用车,算力逾200Tops;(4)MDC810,目标应用场景为L4-L5功能场景的乘用车或Robotaxi,算力逾400Tops;
华为MDC亦采用CPU+ASIC组合架构,自研NPU昇腾310提供强劲AI算力。根据华为2018年发布的MDC产品介绍,MDC集成了华为自研的Host CPU芯片、AI芯片、ISP芯片与SSD控制芯片。
MDC300计算平台支持L3级自动驾驶,由昇腾310芯片(自研达芬奇架构NPU,属于ASIC)、鲲鹏CPU和英飞凌TC397三部分构成,MDC600计算平台支持L4及以上自动驾驶,包括鲲鹏CPU、昇腾310芯片和ISP。


华为MDC300/600部分核心参数


华为MDC平台基于高度集成的Ascend Soc
地平线属于我国第一个实现车规级AI芯片前装量产的企业。2019年公司发布征程2,已公布搭载地平线征程2芯片的有长安UNI-T、奇瑞蚂蚁、智己汽车、长安UNI-K、广汽埃安AION Y、东风岚图Free、江淮汽车思皓QX、广汽传祺GS4 Plus、上汽大通MAXUS MIFA概念车9款车型。
目前,2021年发布的征程5已率先斩获车型定点,量产上车时间预计在2022年下半年,计划中的征程6基于车规级7nm先进工艺,预计工程样片的推出时间是2023年,量产上车是在2024年。


地平线汽车智能芯片路线图
地平线征程2采用CPU+ASIC组合架构。2019年地平线发布国内首款已量产车规级边缘AI视觉芯片征程2.0,该芯片用28纳米制程制造,集成双核Arm Cortex A53,以及自研的双核地平线二代BPU架构,达到车规级AEC-Q100标准,性能方面,其等效算力超过4 TOPS,采用17mm*17mm的BGA388封装工艺,其典型功耗仅为2W。


地平线征程2芯片架构


地平线征程2方框图
3. 流派三:CPU+ FPGA(百度-赛灵思、Waymo等为代表)
百度已量产的ACU采用CPU+FPGA。百度ACU是Apollo面向量产的自动驾驶车载计算单元,根据不同需求场景的计算能力要求,分为多个系列产品,ACU-Advanced是自主泊车产品专用车载计算平台,目前已量产下线。
ACU-Advanced核心架构基于Xilinx ZU5(FPGA)设计,同时适配百度飞桨深度学习框架。根据百度的研发人员观点,赛灵思该款芯片具有灵活性好,有利于算法迭代;其次,该款芯片可以提供充足算力,保持行驶速度;再次,可以满足85℃环境下正常使用的严苛车规级要求。同时,FPGA SOC性能可靠度高,有助于保证自动驾驶的安全。


百度采用的赛灵思FPGA芯片架构


百度ACU-Advanced采用的底层硬件架构
Waymo采用Xeon处理器(CPU)和 Arria FPGA为典型处理方案。2017年英特尔表示自2009年以来一直与谷歌合作开发无人驾驶汽车,同时也与 Waymo 合作,英特尔Waymo后者提供 Xeon处理器、Arria FPGA(用于机器视觉)以及千兆以太网的解决方案,以帮助 Waymo无人汽车实时处理信息。


英特尔Xeon 处理器架构


Arria 10 FPGA架构
分享到:
 
反对 0 举报 0 收藏 0 评论 0
广告
  • 广告
  • 广告
  • 广告
沪ICP备11026917号-25