首页 > 汽车技术 > 正文

一文读懂自动驾驶数据闭环

2021-09-21 18:17:01·  来源:智驾最前沿  
 
3)数据增强/对抗学习
过拟合(Overfitting)是指当机器学习模型学习高方差的函数完美地对训练数据建模时出现的现象。数据增强(Data Augmentation)增强训练数据集的大小和质量,克服过拟合,从而构建更好的机器学习模型。
图像数据增强算法包括几何变换、色彩空间增强、内核过滤器、混合图像、随机擦除、特征空间增强、对抗训练(adversarial training)、生成对抗网络(generative adversarial networks,GAN)、神经风格迁移(neural style transfer)和元学习(meta-learning)。
激光雷达点云数据的增强方法还有特别的一些:全局变换(旋转、平移、尺度化)、局部变换(旋转、平移、尺度化)和3-D滤波。
对抗性训练可以成为寻找增强方向的有效方法。通过限制对抗网络(adversarial network)可用的增强和畸变变换集,通过学习得到导致错误的增强方式。这些增强对于加强机器学习模型中的弱点很有价值。
值得一提的是,CycleGAN 引入了一个额外的 Cycle-Consistency 损失函数,稳定 GAN 训练,应用于图像到图像转换(image-to-image translation)。实际上CycleGAN 学习从一个图像域转换到另一个域。
机器学习模型错误背后的一个常见原因是一种称为数据集偏差或域漂移(dataset bias / domain shift)的现象。域适应方法试图减轻域漂移的有害作用。对抗训练方法引入到域适应,比如对抗鉴别域适应方法(Adversarial Discriminative Domain Adaptation,ADDA)。
最近出现的一些新实例方法:
  • “AutoAugment: Learning Augmentation Strategies from Data“
 
  • “Classmix: Segmentation-based Data Augmentation For Semi-supervised Learning“
 
  • “Data Augmentation for Object Detection via Differentiable Neural Rendering“
 
  • “LiDAR-Aug: A General Rendering-based Augmentation framework for 3D Object Detection“
 
  • “Adaptive Object Detection with Dual Multi-Label Prediction“
 
  • “Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation“
 
分享到:
 
反对 0 举报 0 收藏 0 评论 0
沪ICP备11026917号-25