雷诺汽车构建并训练了一个长短期记忆 (LSTM) 网络,该网络预测 NOx 水平的准确率达到了 85%-90%,而使用查找表的准确率只有 60%-70%。
作者:Nicoleta-Alexandra Stroe 和 Vincent Talon,雷诺汽车
雷诺汽车正在积极开发用于零排放汽车 (ZEV) 的下一代技术。与此同时,我们正在努力使内燃机 (ICE) 车辆变得更清洁、更高效。
关注点之一是减少有害排放。ICE 会产生氮氧化物 (NOx),从而导致烟雾、酸雨和温室气体的产生。
为了减少 NOx 排放,我们需要准确估计不同发动机工况点下的排放量,例如在不同的扭矩和转速组合下的排放量。
在真实发动机上运行测试成本高昂且通常很耗时,因此传统做法是使用查找表或燃烧模型计算 NOx 估计值。
查找表准确性不佳;至于燃烧模型,由于捕捉排放动力学所需的方程相当复杂,创建模型异常困难。
NOx 的物理模型非常复杂,很难在发动机的整个工况范围内使用;此外,它们不能在 ECU 上实时运行。
前不久,我们开始使用长短期记忆 (LSTM) 网络对发动机排出的 NOx(直接从发动机排出而不是从后处理系统排放)建模。
LSTM 是一种神经网络,擅长对顺序数据进行学习、处理和分类。LSTM 远比燃烧模型容易创建。
尽管我们不是深度学习方面的专家,但使用 MATLAB® 和 Deep Learning Toolbox™,我们得以创建和训练了一个网络,该网络能够以近 90% 的准确率预测 NOx 排放量。
在这些测试中,发动机经历了各种常见行驶工况,包括全球统一轻型车辆测试循环 (WLTC) 和新欧洲行驶工况 (NEDC),以及实际行驶排放 (RDE) 测试。
捕获的数据为网络提供了输入。数据包括发动机扭矩、发动机转速、冷却液温度和档位排放量。
然后,我们使用 MATLAB 脚本创建了一个简单的 LSTM 网络。尽管这个初始网络只包含一个 LSTM 层、一个修正线性单元 (ReLU) 层、一个全连接 (FC) 层和一个回归输出层,但它的表现却出奇地好。
不过,我们觉得或许还可以添加更多层来提高其准确性。我们谨慎地控制网络大小,以免网络过大导致过拟合或在 ECU 上占用太多内存。
我们更新了 MATLAB 脚本以增加层,并探索了几种网络配置。因为网络很小,最佳网络配置和架构的选择是手动执行的。
通过试错,我们充分利用了系统的物理特性。例如,对于非线性度高的系统,我们会选择多个 ReLU 层;对于热系统,多个 LSTM 层会更合适。
我们最终确定的网络包含一个 LSTM 层、三个 ReLU 层、三个 FC 层和一个回归输出层。该 LSTM 网络预测 NOX 水平的准确率达到了 85%-90%,而使用查找表的准确率仅为 60%-70%(图 1)。
图 1.真实发动机的实测 NOX 排放量(蓝色)和 LSTM 网络的模拟 NOx 排放量(橙色)。
得到训练好的 LSTM 网络后,我们将其分享给雷诺其他团队,以便他们进行 Simulink® 仿真。有团队将该网络整合到一个模型中,该模型使用网络提供的发动机排出 NOx 水平作为后处理系统的输入。
随后,该团队运行仿真来测量后处理系统在不同发动机工况点下的 NOx 转化效率。
通过将 LSTM 引入系统仿真,该团队得到了通过物理或经验模型难以获得的信息。
雷诺各团队还在仿真中使用 LSTM 神经网络来评估车载诊断 (OBD) 系统的性能,以及估算新的行驶工况下发动机的排放量。
由于成功实现了用于预测 NOx 排放水平的 LSTM 网络,雷诺又开展了一系列后续项目。
在一个项目中,我们使用由 MathWorks 顾问专为我们设计的工具,从 LSTM 网络生成 C 代码以用于概念验证演示。
借助由此生成的代码,我们能够在 ECU 上部署 NOX 排放估计器。在 OBD 系统专用仿真平台中集成 LSTM,即可按照排放标准要求,全天实时检测不健康或故障状态。
深度神经网络往往难以实现 ECU 嵌入,深度 LSTM 网络尤其如此。我们的 ECU 并不是非常强大的计算机,这意味着我们需要在 LSTM 的复杂度(以及预测质量)与 ECU 运行各项计算的能力之间进行权衡。我们应用中的网络相对较小,如果需要,可以轻松集成到卡尔曼滤波器。
最近,我们利用 MATLAB 进一步拓展了深度学习的应用。
现在,我们正使用强化学习开发雷诺发动机的气路控制策略。