[1] P.D. Nezhadfar, R. Shrestha, N. Phan, N. Shamsaei, Fatigue behavior of additively manufactured 17-4 PH stainless steel: Synergistic effects of surface roughness and heat treatment [J],International Journal of Fatigue, 2019(124):188-204 (https://doi.org/10.1016/j.ijfatigue.2019.02.039.)
[2] J.W. Pegues, S. Shao, N. Shamsaei, et,al. Fatigue of additive manufactured Ti-6Al-4V, Part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects[J],International Journal of Fatigue, 2020(132):105358,(https://doi.org/10.1016/j.ijfatigue.2019.105358.)
[3] A. Fatemi, R. Molaei, J. Simsiriwong, et,al. Fatigue behaviour of additive manufactured materials: An overview of some recent experimental studies on Ti-6Al-4V considering various processing and loading direction effects[J], Fatigue & Fracture of Engineering Material & Structure, 2019(3):991-1009 (https://doi.org/10.1111/ffe.13000)
[4] R. Molaei, A. Fatemi, N. Sanaei, et,al. Fatigue of additive manufactured Ti-6Al-4V, Part II: The relationship between microstructure, material cyclic properties, and component performance[J],International Journal of Fatigue,2020(132):105363 (https://doi.org/10.1016/j.ijfatigue.2019.105363.)
[5] J. Pegues, M. Roach, R.S. Williamson, et,al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V[J], International Journal of Fatigue,2018(116):543-552 (https://doi.org/10.1016/j.ijfatigue.2018.07.013.)
[6] P.D. Nezhadfar, E. Burford, K. Anderson-Wedge,et,al. Fatigue crack growth behavior of additively manufactured 17-4 PH stainless steel: Effects of build orientation and microstructure[J], International Journal of Fatigue,2019(123):168-179 (https://doi.org/10.1016/j.ijfatigue.2019.02.015.)