随着汽车电子化和高级辅助驾驶技术的快速发展,自动驾驶作为辅助驾驶技术的高级阶段,已成为全球范围内的一个新的技术研究热点和重点。尤其近年来,自动驾驶在人类交通发展史上取得了里程碑式的进步。
随着深度学习和计算机视觉技术的兴起,自动驾驶为提升交通安全与效率提供了新的解决方案。未来的自动驾驶汽车拥有全面的驾驶感知系统,可以识别道路交通标志、汽车、行人、路况等外部人和物,智能的决策系统对感知的信息快速处理和分析,执行系统精确的执行加速、制动、停车、转向等命令,未来的自动驾驶汽车不会闯红灯;不会酒驾;不会超速;不会疲劳;不会赌气;将会在很大程度上降低道路交通风险,每年可以挽救数十万人的生命。
虽然自动驾驶汽车的优点非常多,但有一个问题无法回避,自动驾驶安全吗?
要回答这个问题,就必须得了解自动驾驶算法是如何进行测试的,点击以下视频,三分钟带你解密自动驾驶算法的测试流程。坐稳,我们马上发车。
自动驾驶汽车测试是自动驾驶研发中的重要环节,也是自动驾驶技术发展的重要支撑,自动驾驶汽车本身结合了车辆技术,人工智能,模式识别,5G通讯,传感器融合等多领域,跨学科知识。跟传统的汽车测试有很大不相同,为了应对千变万化的交通场景,需要海量的数据对自动驾驶算法进行训练,通过不断的迭代,才能覆盖尽可能多的场景。并且测试会贯穿车辆的生命周期,即使车辆已经卖出,并上路行驶,也会定期远程升级,以便覆盖新的场景。
自动驾驶的开发测试流程通常包括:数据集创建、数据标注,模型训练、软件在环、硬件在环,道路测试,场景泛化,用户众包测试。
一、数据集创建指的是,在车型开发前期,根据车型的感知方案,来采集大量原始感知数据,用于算法训练,通常包含训练集和测试集两个部分;
自动驾驶时代,训练数据集非常重要,但是成本也比较高。训练数据集的构建分车端、本地端和云端三个环节。训练数据集海量数据的存储和处理是一个非常大的挑战,数据集的“清洗”提纯也是一个挑战。
二、数据标注指的是,通过人工或者一定的工具,将少量帧用手工标注,且是精细标注。大部分做机器标注,即简化标注。来给数据集添加真值信息,相当于为机器学习系统提供”标准答案”。
人工标注人员对于语义信息更加擅长,但是计算机对于几何,重建,三角化,跟踪更加擅长;同时,随着数据规模的增长,不可能无限地扩大标注团队的规模。所以,更加精确的数据标注需要标注人员和计算机协作进行。
三、模型训练指的是,自动驾驶AI模型迭代和优化的过程
向模型输入那些摄像头、雷达等传感器获取的原始数据,以数学模型算法来计算出最优驾驶决策,然后再直接输出给车辆方向系统和行车系统,最终形成符合路况的驾驶决策。
值得注意的一点是,随着不断贴合真实路况,模型算法也将被不断优化。
模型训练需要频繁在存储设备中读写数据,对存储系统性能要求较高,原始模型开发的过程中需要调用TB级的图片数据集,且模型在开发的过程中也会产生很多中间数据需要存储。
四、软件在环指的是,利用仿真的数据对ADAS的软件栈中的算法进行闭环测试
五、硬件在环指的是,利用仿真软件,实时机和硬件IO接口,对接到真实的ECU,在实时的环境进行算法测试。
硬件在环仿真是自动驾驶汽车技术测试与验证的重要环节,具有周期短、成本低及效率高等优点。
自动驾驶汽车,相对于传统车辆,验证成指数级增加。都依靠实车测试,从时间上和成本上都不现实,进行充分的仿真测试非常关键。
六、道路测试指的是,ADAS原型车在封闭的试验场或者开放的场地进行真实的道路测试。
自动驾驶汽车的道路测试分有两种,一种就是在开发的环境下进行真实的道路测试,而另一种则是在自动驾驶仿真测试平台上进行虚拟测试。而目前几乎所有车企和自动驾驶科技公司,均是以虚拟测试为主,真实的道路测试为辅。
七、场景泛化指的是,结合真实路试工况,通过数字孪生的方式来形成虚拟化的测试场景库,增加测试覆盖度。
八、用户众包测试是指,在量产阶段利用最终用户的车辆来收集稀有case,丰富场景库,并且对算法进行持续迭代。
以上就是自动驾驶测试流程介绍,下一期我们将聚焦自动驾驶测试的第一步,数据集的创建。
未来的自动驾驶汽车对安全性要求极其严格,需要通过灵活的测试,才能实现快速创新,同时保证测试严格性和效率。