首页 > 汽车技术 > 正文

智能网联汽车边缘网络的分布式端-边协同算法

2022-01-24 23:19:20·  来源:智能汽车开发者平台  
 
车联网高级安全服务中,智能网联车辆配备了摄像头,可以拍摄周围的视频,用于安全、交通监控和监视等目的。车辆将获取的视频上传到边缘计算节点后,可以对视频进
车联网高级安全服务中,智能网联车辆配备了摄像头,可以拍摄周围的视频,用于安全、交通监控和监视等目的。车辆将获取的视频上传到边缘计算节点后,可以对视频进行分析和备份,以满足不同的安全驾驶需求。然而,车辆连续直接向边缘计算节点上传生成的视频内容会非常消耗带宽,并消耗大量的能量。基于该问题,提出一种面向智能网联汽车边缘网络的分布式端-边协同算法。针对车联网高可靠低时延内容传输的特点,引入有限块长度编码机制。同时,引入车辆视频信息源的压缩编码功率消耗,建立车辆能耗模型。根据车辆视频信息源的视频质量要求,通过调整视频编码码率、信息源传输速率,以及车辆多路径路由的决策,提出一种完全分布式的优化算法,以提高网络资源利用率,并保证单个车辆的能耗公平性。
引言
车联网技术通过无线接入技术让道路上安装了车载设备单元(On Board Unit,OBU)的车辆可以与行人、相邻的智能网联汽车、路侧设备单元(Road Side Unit,RSU)或者基站等实体便捷地进行各种信息的交换和传播。通过这种方式,智能网联汽车可以获取碰撞预警等信息,从而及时采取相应的措施,进而降低交通事故的发生率、提升自动驾驶车辆的安全性。道路管理者可以利用车联网技术实时获取交通信息,通过车速引导等方式缓解城市交通的拥堵状况,并达到车辆节能减排的目的。
车联网高级安全服务中,智能网联车辆配备了摄像头,可以拍摄周围的视频,用于安全、交通监控和监视等目的。车辆将获取的视频上传到边缘计算节点后,可以对视频进行分析和备份,以满足不同的安全驾驶需求。现有研究显示,如果将车辆获取的视频及时传输到边缘计算节点进行视频分析和备份,可以极大地提高公共安全性。然而,海量的视频内容上传会给当前的车联网增加巨大的流量,导致大量的带宽和能量消耗。
为了解决上述问题,现有的学术工作主要关注内容下载。E. Evdokimova等人提出了一个分析框架,该框架通过多维马尔可夫过程对直通车联网场景中的下行链路流量进行建模:将RSU缓冲区中的数据包到达构建为泊松过程,并且传输时间呈指数分布。考虑到与多维马尔可夫过程相关的状态空间爆炸问题,该文使用迭代扰动技术来计算马尔可夫链的平稳分布。L. Yang等人研究了混合数据传播问题,即优化确定数据传输的时间和目的车辆, 以及车辆是直接从边缘还是从附近的车辆获取所需数据,目的是最小化边缘的流量成本并满足获取数据的时延要求;作者提出了一种新的数据传播算法,称为混合数据传播离线算法,该算法优先寻找最有益的车到车广播,然后选择可行的车到基站传播方式。J. He等人通过考虑交付延迟和保管箱部署成本之间的权衡来研究如何以最佳方式部署保管箱,为了解决该问题,首先提供了一个理论框架来准确估计交付延迟;然后,基于维度扩大和动态规划的思想,设计了一种新颖的最优保管箱部署算法(ODDA)以获得最优部署策略。在内容上传方面,L. Cui等人提议在公交车站部署专用接入点 (AP) 以促进视频上传来研究移动公交车的视频上传问题,提出了一种注水放置算法,旨在平衡分配给每条总线的聚合带宽,通过建立排队模型来分析视频内容的上传延迟,并进一步采用机器学习模型将公交路线的影响纳入排队模型中。
本文提出一种面向智能网联汽车边缘网络的分布式端(智能网联汽车)-边(边缘计算节点)协同算法。针对车联网高可靠低时延内容传输的特点,引入有限块长度机制。同时,引入车辆视频信息源的压缩编码功率消耗,建立车辆能耗模型。根据车辆视频信息源的视频质量要求,通过调整视频编码码率、信息源传输速率,以及对车辆多路径路由的选择,提出一种完全分布式的优化算法,提高网络资源利用率,并保证单个车辆的能耗公平性。
1 系统模型
智能网联汽车边缘网络边-端协同系统如图 1 所示,由智能网联汽车(端)、边缘服务器(边缘计算节点)、基站与边缘网关(路由节点)组成。其中智能网联汽车负责环境视频信息数据的采集、压缩编码和数据传输的中继,用
分享到:
 
反对 0 举报 0 收藏 0 评论 0
沪ICP备11026917号-25