主流双电机混动变速箱技术方案分析(1)
概述
近年来汽车产业的高速发展造成了能源危机和环境污染两大危机,大力发展节能与新能源汽车已成为解决两大危机的必由之路。2020年10月,工信部发布《节能与新能源汽车技术路线图2.0》,预计2035年节能与新能源汽车销量各占50%,其中传统能源乘用车百公里油耗将降至4L。HEV(Hybrid Electric Vehicle)即混合动力汽车,介于传统能源与新能源汽车之间,是一种传统能源节能汽车。HEV车型通过燃油和电力两种能源互补,实现整车节油的目的,据统计HEV车型最大节油可达30%。为达成燃油排放的合规性,国内外各大主机厂纷纷在HEV车型开发中加大投入,日系的丰田、本田,国内的长城、比亚迪等车企均实现车型量产。
混动变速箱是HEV 车型的核心部件,其性能直接关系到整车油耗及动力性等性能指标。集成双电机的变速箱,可实现纯电、串联、并联、混联等多种工作模式,策略匹配更加灵活,在节油方面优势更加突出,已成为混合动力变速箱的一大趋势。本文以国内外主流双电机混动变速箱为研究对象,分析其设计架构及工作原理及模式,进而对比分析其优劣势。本研究对有意向开发双电机混动产品的企业具有一定的借鉴意义。
1、 混合动力技术分类
混合动力技术按照电机个数、位置、及可实现的工作模式可分为并联、串联、混联,如图1 所示。其中,并联式混动,只有一个电机,按照电机与内燃机、变速箱及离合的相对位置,可分为P0-P4五种架构,如下图所示。
两个或多个电机的不同组合可衍生出串联和混联两种模式。其中,串联式又称为增程式,此类型内燃机不能实现直驱行驶,业内多将此类车辆归类于纯电动车辆,在此不作讨论。
混联式分为转矩耦合式和功率耦合式两种。转矩耦合式的组合多为P1+P3架构,如本田I-MMD、上汽EDU、比亚迪DM-I、长城柠檬等,P0+P3/P4也是转矩耦合形式,2018年上市的比亚迪DM3就是该类型。功率耦合式以丰田THS和通用Voltec最具代表性。
2 、转矩耦合式双电机变速箱
2.1 转矩耦合
在混联式驱动架构中,转矩耦合系统可将内燃机与电机的转矩耦合叠加,传递给驱动车轮。内燃机与电机转矩相互独立,通过整车控制器计算分配。两者转速与车辆速度成比例关系,转矩耦合简图如下:
2.2 P1+P3 架构
2.2.1
工作模式P1+P3架构的混合动力系统中,P1为发电机、P3为驱动电机。当车辆起步或速较低时,整车率需求较少,纯电驱动车辆。P3电机利用高压电池电量直接驱动车辆,即为纯电模式;随着车速增加,或者全油门加速工况,动力电池的功率不足以驱动车辆,此时内燃机带动P1发电机发电,与高压电池一起串联驱动车辆,实现串联模式;高速工况,内燃机直驱车辆燃油经济性更佳,此时K0离合器闭合,内燃机直驱车辆。P3电机可通过驱动或发电等模式调节内燃机工况点,使其工作在最佳油耗区域,实现并联模式。具体工作模式见下图。
该图表示为纯电模式
该图表示为串联模式
该图表示为并联模式
2.2.2 双电机同轴式
同轴式双电机变速箱,即P1电机和P3电机物理位置上在同一轴线上。该架构整车X 向尺寸较小,更有利于平台化设计。采用该构型的系统有本田I-MMD、上汽EDU等系统。
本田I-MMD内燃机和P3电机各只有一挡平行轴减速齿轮,P1电机有一挡增速齿轮,内燃机直驱端有一组离合器K0,其结构较为简单。本田I-MMD具体结构简图如下图所示。
上汽EDU内燃机和P3电机各只有一挡平行轴减速齿轮,P1电机无增速齿轮,与内燃机直连。内燃机和P3电机端各有一组离合器K1和K2。上汽EDU系统具体结构简图如下图所示。
EDU与I-MMD相比,内燃机直驱模式可断开K2离合器,P3电机转子不随系统转动,有效降低系统惯量与摩擦损失,提升系统效率,但也增加了系统的复杂度。同时,EDU系统P1电机无增速齿轮,不利于P1电机的小型化设计,但可简化系统结构。
2.2.3 双电机平行轴式
平行式双电机变速箱,即P1电机和P3电机在物理位置上平行布置,这会增加整车X 向长度,不利于整车平台化设计。该类型优点是电机可独立于变速箱设计,电机冷却可灵活地采用水冷或油冷,大大降低集成难度。采用该构型的系统有比亚迪DM-I、长城柠檬等系统。
比亚迪DM-I 系统内燃机和P3 电机各只有一挡平行轴减速齿轮,P1 电机有一挡增速齿轮,内燃机直驱端有一组离合器K0,其结构较为简单。比亚迪DM-I具体结构简图如下图所示。
长城柠檬系统内燃机直驱有平行轴式两挡减速机制,P3电机有一挡平行轴减速齿轮,P1电机有一挡增速齿轮。内燃机直驱端有一组离合器K0。长城柠檬系统具体结构简图如下图所示。
柠檬系统与DM-I相比,内燃机直驱模式有两挡减速机构。这有利于扩大内燃机直驱范围,在车速相对较低时亦可以内燃机直驱,实现更优的油耗目标,但这也增加了系统复杂度和控制的难度。
2.3 其他类型架构
除了P1+P3 架构外,还有P0+P3,P0+P4 等架构类型,如比亚迪DM3混动系统。
该类架构的系统两个电机可不集成在变速箱内,系统结构更为简单。但由于节油潜力、高压系统复杂等方面存在弊端,未能成为行业主流方案。
3 、功率耦合式双电机变速箱
3.1 功率耦合
功率耦合也称为功率分流,该系统输出转矩与转速分别是内燃机、电机转矩和转速的线性代数和。因此,该混动系统可实现发动机的转矩和转速的自由控制。功率耦合式变速箱一般采用行星齿轮组与内燃机和两个电机相连。
3.2 PS架构
3.2.1 工作模式
功率分流架构的混合动力系统中,MG1为发电机,MG2为驱动电机。当车速较低或者车辆起步时,整车需求功率较少,纯电驱动车辆,MG2电机利用高压电池电量直接驱动车辆,即为纯电模式;随着车速增加,或者在全油门加速工况下,动力电池的功率不足以驱动车辆,此时内燃机启动,利用行星排实现功率分流。PS架构通过合理分配内燃机和电机的动力输出,实现各种工况下车辆平顺行驶,进而达到节油的目的。PS架构具体示意图如下图所示。
该图为纯电模式
该图表示为功率分流模式
3.2.2 典型PS架构
国产化的丰田第三代THS系统就是PS架构系统,结构示意如下图所示。该构型内燃机、电机MG1在功率分流行星排一侧,电机MG2在另一侧,三者同轴布置。其中,内燃机连接行星架,电机MG1连接太阳轮,电机MG2通过减速行星排与外齿圈相连。下图表示为丰田第三代THS结构示意图。
通用第二代Voltec与丰田THS殊途同归,同属于功率分流PS架构。第二代Voltec采用两个离合器、双电机和双行星排集成化设计,实现内燃机高效的动力输出,这也增加了控制上的复杂度。下图表示为通用第二代Voltec结构示意图。
4 、总结
(1)双电机混动变速箱可分为转矩耦合和功率耦合两种类型。转矩耦合以本田、比亚迪、长城为代表,功率耦合以丰田、通用为代表。
(2)转矩耦合中P1+P3 架构的混动变速箱具有结构简单,动力性强,控制简单等优势,已成为行业主流构型。
(3)双电机布置位置、内燃机/驱动电机两挡或多挡将成各大主机厂或供应商为专利及构型的布局点。
(4)为实现系统更高的功率密度和效率,本文预测电机高电压化、SCI 逆变等先进技术即将被应用。
-
汽车测试网V课堂
-
微信公众号
-
汽车测试网手机站
编辑推荐
最新资讯
-
NVIDIA 发布 2025 财年第三季度财务报告
2024-11-21 13:30
-
Mack卡车为买家推出创新的虚拟现场探索体验
2024-11-21 13:29
-
氢燃料电池卡车从1到100要多长时间?戴姆勒
2024-11-21 13:28
-
聚焦消费者用车极限环境,2024中国汽研汽车
2024-11-21 13:21
-
新能源汽车高寒环境可靠性行驶试验研究
2024-11-21 13:19