首页 > 汽车技术 > 正文

(动力)电池主要公开技术汇总

2022-11-29 10:19:17·  来源:锂和我  
 

2020年9月23日,特斯拉举办2020年度股东大会暨“电池日”活动,特斯拉掌门人Elon Musk向全球展示了一款全新电池—4680无极耳电池。据悉,相比于此前的2170电池,这款新型电池可以提升5倍的能量,6倍的充电功率,16%的续驶里程,降低每度电成本约14%。
特斯拉“三代”圆柱电池

图片


4680无极耳电池主要包括“4680”和“无极耳”两大技术,4680代表直径46mm,高度80mm的圆柱电池,通过增加单体电芯的尺寸可摊薄非活性物质占比,降低固定成本和BMS难度。无极耳指的并不是没有极耳,而是没有传统意义上的焊接在集流体上的极耳,通过激光直接在集流体上切割出极耳形状,然后与集流盘焊接,通过集流盘将电流引出到壳体,实现外电路的连接。
4680电池拆解内部结构图

图片


4680电池生产工艺简图

图片


在4680电池应用上,特斯拉采用CTC技术方案,即直接将电芯集成到汽车底盘上,从而可以大幅减少零部件数量,实现车身减重,续航提升,单位成本降低。
特斯拉 Model Y 底盘设计

图片


搭载4680无极耳电池的 Model Y 实物拆解图

图片


从实物图中可以看到,组成Model Y的950颗4680电池缝隙间填充了大量粉色泡沫材料(聚氨酯),利用聚氨酯将单个电池之间牢牢粘结在一起,在没有模组和电池包的情况下,也能实现与汽车底盘的可靠固定,并且泡沫材料具有一定的弹性,当电动汽车受到碰撞时,可以吸收电池受力的能量,具有较好的耐冲击和耐振动性能。

4680无极耳电池通过大圆柱方案实现了单体能量的大幅提升,极大简化了PACK的零部件,降低了成本,提升了续航,采用无极耳技术还大幅降低了电池内阻(集流体内阻可降低99%以上),减少了电池产热,提高了安全性能。但4680电池工艺极其复杂(参考4680生产工艺简图,如极耳揉平和与集流盘的焊接等工艺难点),且对设备要求极高,除外,4680电池采用CTC车身一体化集成方案,同样会面临同刀片电池一样的问题,那就是可维修性很差,甚至有过之而无不及,业内给出的评价是:特斯拉这种CTC电池包维修的可能性几乎为零!

5 干法电池

特斯拉掌门人Elon Musk在2020年度股东大会暨“电池日”活动上,向全球展示了一款全新电池—4680无极耳电池,据悉,该款电池采用了干法电极技术,亦可称为“干法电池”。
特斯拉2020年“电池日”活动现场图

图片


早在2019年5月,特斯拉以溢价55%的价格(2.18亿美元)收购了Maxwell公司,根据资料显示,Maxwell成立于1965年,是一家生产超级电容器的公司,产品主要用于能源、工业和汽车领域,公司核心技术是超级电容技术和突破性的干法电极技术。
在锂电池制造过程中,电极制备通常是采用湿法工艺,即将组成电极配方的干粉颗粒与溶剂混合分散形成浆料,然后涂覆在集流体上烘烤后形成电极。干法电极不使用任何溶剂,而是直接将组成电极配方的干粉颗粒高速混合,通过高速剪切使粘结剂PTFE纤维化,然后对混合后的粉末进行热辊压形成自支撑膜,最后将自支撑膜在热量作用下压合粘接在集流体上形成电极。
干法电极制备过程实物图

图片


Maxwell 干法电极制备工艺示意图

图片


由于干法电极制备过程不使用任何溶剂,因此是一种绿色工艺,既节能环保,又可以降低材料成本,还有利于制备能量型电池的厚电极,并且其制造工艺特别适用于下一代掺硅补锂和固态电池体系,可以说是一种非常具有前景的极片制备工艺,但自支撑膜和集流体的接触问题以及干粉颗粒之间的接触问题都会导致电极的阻抗增加,其倍率相对更差,并且干法电极工艺难度较大,需要开发专用设备,目前很难大规模应用。
6 (半)固态电池
2021年1月9日,蔚来汽车“NIO Day”在成都举办,并发布了首款旗舰轿车ET7,宣称搭载了150kWh固态电池,能量密度高达360Wh/kg,续驶里程突破1000km,随后,创始人李斌一句“量产固态电池”更是震惊业界。
蔚来汽车发布150kWh固态电池现场图

图片


实际上,固态电池是一个较为宽泛的概念,传统的锂电池采用液态电解质作为Li+传输的载体,而固态电池技术的核心就是针对电解质的革新。根据电解质中液态成分含量划分为半固态电池(液体含量≤10%)、准固态电池(液体含量≤5%)、全固态电池(液体含量0%),固态电池的发展和应用趋势将是一个“梯次渗透”的过程,最终的固态电池将完全采用固态电解质,并且负极需要采用锂金属材料,才能充分发挥固态电池的优势,理论能量密度可达400~500Wh/kg甚至更高。
固态电池技术发展路线

图片


固态电解质的研究主要包括三大类:聚合物、氧化物、硫化物。
1)聚合物固态电解质由聚合物基体(如聚酯、聚酶、聚胺等)和锂盐(LiClO4、LiFP6等)组成,Li+以锂盐形式“溶于”聚合物基体,传输速率受到基体相互作用及链段活动能力的影响,温度越高,聚合物的离子电导率越高。目前主要研究的聚合物电解质体系是PEO,其可与多种锂盐发生络合,对锂盐溶解性好,但室温电导率仅10-5S/cm,氧化电位也较低(3.8V),需要进行改性来满足高电压体系,
2)氧化物固体电解质包括晶态(钙钛矿型LLTO、NASICON型、石榴石型LLZO、LISICON型)和非晶态(LiPON型等)两种物质结构。氧化物晶态固体电解质化学稳定性好、循环性能好,但其室温电导率也较低,电解质与电极颗粒接触差。LiPON型电解质制备工艺复杂、成本较高。

分享到:
 
反对 0 举报 0 收藏 0 评论 0
沪ICP备11026917号-25