百度Apollo车路协同自动驾驶典型实践场景和技术优势
AD盲区问题描述:
如图6.16所示,受限于单车智能的传感器感知角度,在出现静态障碍物或动态障碍物(如大型车辆)遮挡时,车辆难以准确获取盲区内的车辆或行人的运动情况。
图 6.16 静态盲区:行人突然闯入
VICAD动静态盲区协同感知:
如图6.17所示,通过路端多传感器部署,实现对多方位、长距离连续检测识别,并与车辆感知进行融合,实现自动驾驶车辆对盲区内车辆或行人的准确感知识别,车辆可提前做出判断和决策控制,进而降低事故风险。
图 6.17 静态盲区非机动车/行人鬼探头协同感知
(三)动态盲区/遮挡协同感知
-
左转/掉头盲区或遮挡协同感知:
如图6.18所示,车辆(蓝白色)在路口左转或掉头时,有大卡车或公交车(粉色长多边形)产生了动态盲区遮挡住了后面的车辆,通过VICAD全量协同感知,车辆可以获取盲区车辆的运动情况,避免了车辆急刹或事故的风险。
图 6.18 左转/掉头盲区或遮挡协同感知
(2)大车遮挡协同感知:
在车辆直行时,左侧大车遮挡住了横穿的电动车,通过VICAD动静态盲区协同感知,车辆可以提前获取盲区车辆、非机动车或行人的运动情况,避免了车辆急刹或事故的风险(如图6.19和6.20)。
图 6.19 路口大车遮挡场景
图 6.20 路口大车遮挡车路协同感知
(四)超视距协同感知
AD超视距感知问题描述:
受限于车载传感器的类型、感知范围、分辨率等因素,车辆对超出车载传感器覆盖范围的交通运行状况、交通参与者或障碍物检测结果不稳定,容易出现感知不到、感知跳变等问题。
VICAD超视距协同感知:
如图6.21所示,通过路端多传感器部署,实现对多方位、长距离连续检测识别,并与车辆感知进行融合,实现自动驾驶车辆对超视距范围内车辆或行人的准确感知识别,车辆可提前做出判断和决策控制, 进而降低事故风险。
图 6.21 超视距协同感知
- 下一篇:标准 | SAE J3101车辆的硬件保护安全(1)
- 上一篇:地图参考位置协议
-
汽车测试网V课堂
-
微信公众号
-
汽车测试网手机站
编辑推荐
最新资讯
-
HEAD acoustics下线检测:最高级别的质量保
2024-11-15 17:09
-
新能源公司与哈尔滨理工大学联合研究中心揭
2024-11-15 17:07
-
标准研究 | 汽车也要保持“头脑清醒”?有
2024-11-15 17:05
-
基础模型在推进自动驾驶汽车中的前瞻性作用
2024-11-15 17:03
-
中国汽研智能驾驶自主可控检测装备首批联合
2024-11-15 17:01