百度Apollo车路协同自动驾驶典型实践场景和技术优势
基于北京亦庄各个路口的实际交通流数据,分别采用自适应控制方法,以及基于GNN的数据预测 与补全方法(原理见图6.48),对区域信号灯进行优化控制性能比较,如表6.4所示,全天延误表示0点至24点内的平均延误;早高峰延误表示早7时至9时内的平均延误;平峰延误表示10时至16时 内的平均延误。结果表明,基于GNN的数据预测与补全方法,在不同时段内均可有效提升交通通 行效率,降低车均延误。
表 6.4 基于GNN预测的区域信号控制与自适应区域信号控制对比(亦庄)
图 6.48 基于GNN流量预测的区域信号控制示意图
- 下一篇:标准 | SAE J3101车辆的硬件保护安全(1)
- 上一篇:地图参考位置协议
-
汽车测试网V课堂
-
微信公众号
-
汽车测试网手机站
编辑推荐
最新资讯
-
HEAD acoustics下线检测:最高级别的质量保
2024-11-15 17:09
-
新能源公司与哈尔滨理工大学联合研究中心揭
2024-11-15 17:07
-
标准研究 | 汽车也要保持“头脑清醒”?有
2024-11-15 17:05
-
基础模型在推进自动驾驶汽车中的前瞻性作用
2024-11-15 17:03
-
中国汽研智能驾驶自主可控检测装备首批联合
2024-11-15 17:01