自动驾驶车辆的系统架构
使用GP的方法探索机动的潜在执行空间:可以从训练数据中学习每个机动的GP,并以生成方式使用GP来创建每个机动的样本轨迹。
使用RRT的方法探索机动的潜在执行空间:可以通过在车辆演化模型的输入空间中采样点,根据估计的机动意图在采样中应用偏差来生成RRT树。这种方法的优点是它总是为机动生成动态可行的轨迹,作为轨迹的替代。
图30 三种不同方法对比
局限性:
实际上,车辆相互独立移动的假设不成立。车辆与其他车辆共用道路,一辆车的机动动作必然会影响其他车辆的机动动作。在道路交叉口,车辆间的依赖性特别强,优先权规则迫使车辆考虑其他车辆的机动。忽视这些相关性可能导致对情况的错误解释,并影响风险评估。
1.4.2.3基于交互感知的运动模型(Interaction-aware motion models):
交互感知运动模型考虑了车辆机动之间的相互依赖性,是迄今为止文献中提出的最全面的模型。与基于物理的运动模型相比,它们允许更长期的预测,并且比基于机动的运动模型更可靠,因为它们考虑了车辆之间的相关性。但文献中很少有交互感知运动模型。它们一般有两种方法:一种是基于原型轨迹,一种是基于动态贝叶斯网络。
基于轨迹原型的方法,在学习阶段不能考虑车辆间的影响,因为由此产生的运动模式数很快就会变得难以处理。然而,可以通过假设驾驶员在能够避免碰撞时有强烈的倾向来考虑匹配阶段的相互影响。导致不可避免碰撞的成对轨迹在匹配过程中会受到惩罚,因此,这样就筛选出了安全轨迹。这种方法是在使用轨迹原型时考虑相互依赖性的一种较好的解决方法。然而,建模其他类型的影响的问题仍然存在,因为一辆车对另一辆车轨迹的影响无法直接建模。
基于动态贝叶斯网络的模型的方法:大多数交互感知运动模型都是基于动态贝叶斯网络(DBN)的。多个移动实体之间的成对依赖关系用耦合HMM(CHMM)建模。
然而,由于可能的成对依赖关系的数量随着实体的数量呈二次增长,因此在复杂的交通情况下,复杂性是不可管理的。简化模型的一种解决方案是通过假设周围交通影响感兴趣的车辆而使CHMM不对称,但反之亦然。不对称依赖的假设大大降低了问题的计算复杂性。此后,它被用于许多工作中,尤其是在处理变道和超车操纵或跟车时。
利用交通规则调节车辆相互作用的方法。多主体影响被分解为成对依赖的对数线性组合,如:成对依赖类型为“支路上的车辆对主道上车辆的让路”。
图31 基于行为交互运动模型的轨迹预测
一种通过使用因子状态解释了相互影响:一种能够同时估计交通参与者行为并预测其未来轨迹的滤波器。该滤波器被建模为动态贝叶斯网络。因子化状态空间对因果依赖进行建模,允许以紧凑的方式描述模型,并降低推理过程的计算复杂性。
一种来模拟道路交叉口处车辆的联合运动的类似的方法。该方法引入了一个称为“预期机动”的中间变量,而不是直接建模本地情景情境和驾驶员意图之间的依赖关系。在所提出的模型中,情景影响了驾驶员的预期行为,进而影响驾驶员的意图。
局限性:
交互感知运动模型是迄今为止文献中提出的最全面的模型。与基于物理的运动模型相比,它们允许更长期的预测,并且比基于机动的运动模型更可靠,因为它们考虑了车辆之间的相关性。然而,这种穷尽性有一些缺点:使用这些模型计算车辆的所有潜在轨迹在计算上很昂贵,并且与实时风险评估不兼容。
1.4.3风险评估
大部分的风险评估都具有以下两个步骤:1)预测场景中所有移动实体的潜在未来轨迹。2)检测每对可能的轨迹之间的碰撞,并基于碰撞的总体概率得出风险估计。然后有以下几种分类。
1.4.3.1二进制碰撞检测
在基于线性物理的运动模型的特殊情况下,通过求解运动模型的线性微分方程,可以容易地导出特定时间车辆状态的解析解。
碰撞风险的计算可以是二进制的。在基于线性物理的运动模型的特殊情况下,通过求解运动模型的线性微分方程,可以容易地导出特定时间车辆状态的解析解。因此,以有效的方式。然而,在一般情况下,运动方程过于复杂,无法推导出闭合解。一种解决方案是通过分段直线轨迹来近似每个轨迹。更常见的方法是离散化轨迹,并在每个离散时间步迭代检查碰撞。根据这一推理,可以通过定义两点之间距离的阈值(来自同一时间步的两条轨迹),以简单的方式检测碰撞。为了考虑车辆的形状,可以用“两辆车形状重叠”的条件来代替该阈值。尽管并不能得到确切的形状,但车辆通常被表示为多边形或可以用织机测试点表示。如果有关于车辆状态不确定性的信息,并且该不确定性是高斯的,则可以通过对标准偏差应用阈值来使用椭圆代替多边形。为了简化相交面积的计算,可以用一组圆或一组点来近似椭圆。
一些驾驶员辅助系统专注于检测不可避免的碰撞。该计算是二元碰撞预测的一种特殊情况,根据驾驶员是否能够执行无碰撞机动,将风险分配为0或1。确定是否存在这种机动可以通过两种方式进行。
第一个是计算逃生机动(即车辆应如何转向、制动或加速来避免碰撞),并检查这些操作是否可行(“可行”意味着转向、制动或加速不超过车辆的物理限制)。第二个是考虑组合转向、制动和加速机动的整个空间,并对无碰撞轨迹进行优化搜索。这一概念与机器人技术中使用的不可避免碰撞状态(ICS)概念密切相关。
1.4.3.2概率碰撞检测
考虑到车辆未来运动的不确定性,可以用概率方式计算碰撞风险。概率可以通过计算两辆车的中心位于同一个单元的概率,在离散位置空间上计算,对于所有可能的单元组合。碰撞概率可以测量为表示车辆未来运动的几何形状之间重叠的百分比。对于当前状态的正态分布不确定性,已经提出了一种基于无迹变换的随机线性化的解决方案。
当车辆的未来运动由样本轨迹上的概率分布表示时(这通常是依赖于蒙特卡罗模拟或高斯过程的方法的情况),通过对所有可能的未来轨迹进行积分并检测每个可能的轨迹对之间的碰撞,可以将风险计算为“未来碰撞的概率”。这种方法在处理不确定性方面提供了很大的灵活性。例如,对于基于机动的运动模型,计算可以对机动及其执行进行求和,或者假设机动是已知的,并且只对可能的执行求和。此外,根据最终应用,可以计算与特定车辆碰撞的风险或所有车辆的总和,并获得全局碰撞风险。
1.4.3.3其他风险检测方法
通过进一步分析预测的轨迹及其相交点,有可能得出一些指标,这些指标提供了有关潜在碰撞的更多信息。潜在碰撞危险性的流行指标是车辆的速度、代表车辆的形状之间的重叠量、两辆车同时占用冲突区域的概率以及碰撞的配置。可以使用这些指示符所提供的信息来确定减轻或避免潜在冲突的最佳方式。
其他流行的风险指标是基于“time-to-X”(或TTX)的度量,其中X对应于碰撞过程中的相关事件,如碰撞时间(TTC)和反应时间 (TTR)。
TTC:其中标准的风险指标是碰撞时间,它对应于碰撞发生前的剩余时间。它可以用来指示应该采取什么行动。例如,当TTC仍然较大时,最好通知或警告驾驶员,而不是应用制动器。对于自动紧急制动应用,可以将TTC与车辆完全停止所需的时间进行比较,以决定何时应用制动。对于驾驶员警告应用,需要将驾驶员反应时间添加到停止车辆的时间中。通过假设自动驾驶车辆执行特定轨迹的风险与最早的TTC成反比(TTC是针对场景中其他车辆的所有可能轨迹计算的),TTC也可以用作识别自动驾驶车辆最小危险机动的工具。
TTR:一个密切相关的风险指标是反应时间,它对应于驾驶员在碰撞不可避免之前可采取行动的时间。其目的是模拟不同的驾驶员动作(如刹车、加速、转向),并确定其中一种动作能够避免碰撞的最晚时刻。
1.5交通信号检测与识别
交通信号检测和识别子系统主要负责检测和识别交通规则中定义的标志。该系统是用来帮助汽车根据交通法则做出正确的决定。在交通信号检测和识别中,有许多与交通信号相关的任务。这里主要探讨了三个主要交通信号检测和识别的方向:交通信号灯、交通标志和自动驾驶汽车周围环境中的路面标记。
1.5.1交通灯检测和识别
交通灯检测和识别涉及检测汽车周围环境中的一个或多个交通灯的位置(如,在图像中表示)并识别它们的状态(红灯、绿灯和黄灯)。
交通灯检测和识别的方法主要可分为两类:基于模型和基于学习。交通信号灯在颜色和形状信息方面具有明确的结构:常见的交通信号灯有三个灯泡(每个状态一个:红色,绿色和黄色)以及明确定义的形式。因此,早些时候,交通灯检测和识别的大多数方法都是基于模型的。这些方法依赖于手工制作的特征工程,该工程试图利用人类关于对象的颜色和形状的信息来构建能够检测和/或识别它的模型。当没有严格遵守假设时,通过使用颜色和形状信息的方法鲁棒性并不好。为了增强其鲁棒性性,提出了使用不同特征(例如,颜色,形状和结构)的组合。一种结合了颜色(使用颜色分割),形状/结构(使用黑盒检测)和地理信息(仅当已知交通信号灯使用时才使用系统)预期。然而,他们的系统受到基于模型的方法常见的问题:需要大量超参数调整,这也就意味着在某些情况下需要重新校准。实验过程中,在过曝、遮挡、交通信号灯的非标准安装以及其他一些在实际情况下并不罕见的情况下基本模型的方法容易出现失败。在基于模型的方法的背景下,这种组合显示还不够。因此,研究人员开始引入基于学习的方法。
在基于学习的方法中,功能仍然是手工制作的,但检测和识别过程是从基于规则的变为基于学习的。级联分类器可能是第一次尝试基于学习的方法。最终,还研究了HOG和Gabor特征与分类器(如SVM,AdaBoost和JointBoost)的流行组合。最近,端到端方法(即,不需要手工制作的特征)优于大多数基于模型的方法。一种将GPS数据和交通灯位置数据库用于识别图像中的感兴趣区域,并且采用卷积神经网络(CNN)来识别交通灯状态。此外,最先进的通用物体检测方法已成功应用于交通信号灯的检测(通常无需识别其状态)。全面地来说,这些通用深度物体检测方法(或简称深度学习检测方法)不提供交通灯检测和识别任务的性能细分。尽管与基于模型的方法不同,然而这些深度学习检测方法往往对过度曝光,颜色失真,遮挡等具有更强的鲁棒性。基于学习的方法,尤其是那些使用深度学习的方法,需要大量带注释的数据。直到最近,带有注释红绿灯的大型数据库才能公开发布,为基于学习的方法提供支持和支持。如今,最常见的数据库是LaRA(11,179帧),LISA,博世小交通灯(13,427帧),BDD(100,000帧)和Udacity(13,063)帧。‘
- 下一篇:利用内省学习和推理增强基于栅格的运动规划
- 上一篇:专利揭秘上汽“躺式”电池安全设计
-
汽车测试网V课堂
-
微信公众号
-
汽车测试网手机站
编辑推荐
最新资讯
-
海内外智能网联汽车数据空间研究与参考架构
2024-12-24 21:30
-
吉利全新一代域控式热管理集成模块下线
2024-12-24 21:28
-
智驾未来:技术架构与测评规范前沿| 第一期
2024-12-24 21:25
-
全固态电池试验线即将投产!
2024-12-24 21:24
-
ASAM XIL 3.0.0版本发布
2024-12-24 21:23