首页 > 汽车技术 > 正文

国内外主流车型智能驾驶测试评价体验

2024-10-25 11:17:59·  来源:智驾社  
 
多车道场景考察车辆跨车道交互行为,国内车企车道线依赖较强。在多车道场景之外的其他场景也有涉及到多车道的行为,但车道主要是作为这些场景的背景板。此处单列的多车道场景为自动驾驶车辆在两个及以上车道进行操作的场景,主要考察跨车道交互行为,体现车辆道路规划与预测能力的强弱。换道和车道汇流分流场景是多车道场景中的主要场景,在测试中我们发现国内车企自动驾驶算法中规则模块的车道线权重较高,对车辆的场景能力存在一定限制。

在换道场景方面,更为强调路径规划。问界与小鹏均存在道路上无明显障碍物且用户觉得没有必要时,进行多次变道的场景。在上海测试中,小鹏偏好变道靠左行驶,而问界左转靠左、右转靠右车道的逻辑明显,且偏好连续变道(必要性不强);问界会在很远的距离就开始提前变道,但在当时的路况中有时并非最优策略。阿维塔同样存在车道选择犹豫的场景,虽未导致接管,但影响驾驶体验。

在汇流分流场景中,预测模块准确度与切入车流时机较为重要。汇流分流场景又包含上下匝道、车道线合并、主辅路合并分流等场景,要求车辆对车道车流有精准的感知预测,测试场景中特斯拉表现均较为优秀。但从特斯拉的一个测试场景中注意到,后方消防车辆以鸣笛的方式传递需要让道的信号,特斯拉 FSD 暂时不具备听力和分辨消防车的能力,按照美国的交规只能采取人工接管。

除以上场景之外,目前无论是特斯拉还是国内车企在加塞场景方面仍有较大进步空间。在加塞时,自动驾驶系统一方面要保持安全距离,另一方面要择时汇入车流,但中间涉及到博弈等复杂问题,特别是在堵车时变道加塞场景,当前自动驾驶系统基本都是完成加塞预备动作后卡在中间动弹不得,需要人为接管推进。

图片

3.3.5、 复杂道路场景:环岛场景仅特斯拉能处理,国内暂未覆盖

复杂道路场景基本是自动驾驶系统很难处理的道路场景,在我们的测试中,这类场景较少,但是接管率较高。其中环岛场景一直以来都是处理难题,在环岛场景中,自动驾驶车辆需要完成驶入、换道、驶出等操作,再加上常见的不遵守交通规则的非机动车,更增加了复杂性。自动驾驶车辆需要根据驶出环岛的路口选择合适的内侧、中间、外侧车道,驶出环岛时需要提前变换到中间车道后再变换到外侧车道,最后驶出环岛。内侧车道行驶干扰少,但是驶出时需要变换两条车道,对感知、规划增加了更多挑战;外侧车道行驶,驶出环岛成本最低,但是需要面对的无序的干扰较多。在如此复杂的规则下,目前国内车企在面对环岛场景时会提前提示接管,并自动退出自动驾驶功能。而特斯拉 FSD 表现出众,能够应对测试场景中出现的环岛场景。

掉头场景方面,问界 M9 在广州实现了一次掉头操作,在重庆与北京均未成功;智己 L6 在上海也实现了一次自主掉头;小鹏在掉头场景之前会判断能否一把方向盘掉头,否则会提示接管。修路场景方面,道路正在进行维修或施工,多异形障碍物,对感知能力要求较高的同时,也需要车辆及时重新规划路径,在我们的测试中仅有特斯拉、问界、小鹏遇到该类场景,但除特斯拉外的国内车企对修路场景的通过率均较低。

3.4、 城市分析:不同城市中,不同的规控策略带来的体验差异较大

前文提到国内车企对于城市 NOA 功能采取的开城策略,同时不同城市的驾驶风格、驾驶习惯存在差异,道路工况也存在较大差异,相比较下能够更好发现车企自动驾驶的能力。为了比较自动驾驶系统在不同城市之间的表现,我们选取问界与小鹏在北京、上海、广州、重庆四地进行了测试。从场景数量的分布上看,问界在重庆、北京的场景样本数量最多;小鹏在上海、北京的场景样本最多,但是在广州限于测试时间与路况,仅有 11 个场景样本。

在道路工况方面,上海所测试道路车道线较为清晰,且车道较为宽敞,红绿灯并不复杂,相比之下,北京所测试某些道路的车道线较为模糊复杂,某些非机动车道比机动车道还要宽,为自动驾驶系统的运行造成了较大的挑战;重庆方面,不仅车道多为窄路,且交通信号灯较为复杂,尽管车道线状况良好但也会有信号灯识别错误的情况出现;广州测试道路也相对宽敞,具有清晰的车道线与红绿灯提示。在交通参与主体方面,相较重庆、广州而言,北京、上海测试路段遇到的司机显得较为文明礼让,而重庆测试路段遇到的司机相比则更为激进,重庆路况复杂的另一因素在于由于多为窄路,路边停车以及非机动车停放较多,部分场景下车辆规划路线上会遇到长时间的停泊车辆,对自动驾驶系统造成较大的考验。

分享到:
 
反对 0 举报 0 收藏 0 评论 0
沪ICP备11026917号-25