有源模拟滤波器的快速设计
几乎所有电子电路中都能看到有源模拟滤波器的身影。音频系统使用滤波器进行频带限制和平衡。通信系统设计师使用滤波器调谐特定频率并消除其它频率。为了使高频信号衰减,所有数据采集系统都在模数转换器(ADC)前面有一个抗锯齿(低通)滤波器,或者在数模转换器(DAC)后面有一个抗镜像(低通)滤波器。这种模拟滤波还可以在信号到达ADC之前或者离开DAC之后,消除叠加在信号上面的高频噪声。如果ADC的输入信号超出转换器采样频率的一半,则该信号的大小被可靠地转换;但是,在其变回数字输出时,频率也发生改变。
利用TI的WEBENCH®滤波器设计器软件,可以高效地设计出低通、高通、带通或者带阻滤波器。这种应用程序替代了TI的FilterPro™和以前国家半导体的WEBENCH有源滤波器设计器软件。在生成有源滤波器时,它使用这些程序和公式。但是,它允许深度调节各种滤波器变量,优化滤波器,为滤波器电路寻找到正确的TI运算放大器 (op amp),并具有SPICE模拟功能,比上面两个程序更加强大。
低通模拟滤波器的重要设计参数
低通模拟滤波器的频域规范包括4个基础参数:
•fc,即滤波器的–3-dB截止频率
•Ao,即滤波器的增益
• Asb,即阻带衰减
• fs,即阻带衰减的中断频率
图1所示WEBENCH滤波器设计器的滤波器类型窗口列出了这些参数。DC到截止频率(fc)的频率范围为带通区域。图1中Ao为带通响应量级。使用巴特沃兹(Butterworth)或者贝塞尔(Bessel)滤波器时,带通响应可以为扁平,并且无纹波。相反,一直到截止频率,切比雪夫(Chebyshev)滤波器都有纹波。切比雪夫滤波器的纹波误差量级为2△AMAX。
滤波器响应超出fc时,它会通过过渡带降至阻带区域。滤波器近似法(巴特沃兹、贝塞尔和切比雪夫等)决定过渡带的带宽和滤波器的阶数(M)。传输函数的极点数决定滤波器阶数。例如,如果某个滤波器的传输函数内有3个极点,则其为一个三阶滤波器。
一般而言,当更多极点用于实现滤波器设计时过渡带变得更小,如图2巴特沃兹低通滤波器所示。理想情况下,低通、抗锯齿滤波器应有“砖墙”式响应,并且过渡带极小。实际而言,这并不是最好的抗锯齿方法。进行有源滤波器设计时,每两个极点就要求有一个运算放大器。例如,32阶滤波器要求16个运算放大器、32个电容器和多达48个电阻器。
巴特沃兹、贝塞尔和切比雪夫是一些比较流行的滤波器近似法类型。查看量级和频率域对比以及量级和时域对比情况以后,可以知道滤波器类型。
巴特沃兹滤波器
巴特沃兹滤波器传输函数包括所有极点,并且没有零,其表达式如下:
四阶、低通巴特沃兹滤波器的响应在带通部分为扁平。这种特性的技术术语称作“最大扁平”。之后,它会显示,过渡带的衰减速率不如切比雪夫滤波器。
相同四阶巴特沃兹滤波器的阶跃响应在时域中有一些过冲和振铃。如果滤波器阶数更高,则这种过冲也会更高。如果这种滤波器用在多路器之后,则应考虑其稳定时间。
切比雪夫滤波器的传输函数与巴特沃兹滤波器类似,因为它具有所有极点,并且没有零:
四阶、低通切比雪夫滤波器的频率响应在带通区域有0.2dB的纹波。电路设计的极点布局决定了这种纹波。总之,纹波量级的增加会降低过渡带的宽度。
理论上,2△AMAX(图1)的纹波量级可以如我们预期的那样大或者小。高纹波量级一般会带来更多的带通区域误差,但却可以实现更快的过渡带衰减。
相比巴特沃兹滤波器,过渡带衰减速率变化更剧烈。例如,为了满足0.5dB纹波的三阶切比雪夫滤波器的过渡带宽要求,要求使用一个四阶巴特沃兹滤波器。尽管使用切比雪夫滤波器时在带通区域存在振铃,但阻带没有振铃。
过冲和振铃现象是频域中相位响应的结果。我们都还记得,阶跃响应(或者方波)傅立叶分析表明,通过增加奇数谐波正弦信号可以建立方波。结果是,来自阶跃输入的高频在低频之前到达滤波器的输出端。它被称作“失真群延迟”。这种时长数秒的群延迟计算方法如下:
滤波器近似法类型比较
对于低通滤波器来说,滤波器近似法类型影响滤波器截止频率之前和之后的频率响应。由于频率(单位赫兹)倒转为数秒时间,因此滤波器类型会对时域产生相反影响。表1对频域(带通和过渡区域)和时域(阶跃响应)中的低通巴特沃兹、贝塞尔和切比雪夫滤波器进行了比较。
使用WEBENCH滤波器设计器开始设计
利用滤波器设计器,工程师可在数分钟内完成对整套多级有源滤波器解决方案的设计、优化和模拟工作。通过TI厂商合作伙伴提供的TI运算放大器和无源组件,可创建出许多经过优化的滤波器设计。你可以从众多低通、高通、带通和带阻类型中选择一个滤波器。如果需要,可以规定衰减、群延迟和阶跃响应等性能规范,并且还有大量的滤波器响应可供选择,例如:巴特沃兹、贝塞尔、切比雪夫、线性相位和过渡高斯等。通过优化脉冲响应、稳定时间、最低成本、带通纹波和阻带衰减,可确定最为适合于具体设计的滤波器响应。
Sallen-Key或者多反馈拓扑结构是所有滤波器级的设计选项,并且通过评估增益带宽、电流、成本以及其它参数之间的关系,选择最适合于设计的最佳运算放大器。电阻器/电容器容差可规定为理想状况,即0.5、1、2、5、10或者20%。使用用户定义的电容器种子值进行实验,调节滤波器设计的电阻器值范围。另外,还可对滤波器拓扑结构进行优化,以实现灵敏度要求、最低成本和最小体积。
之后,使用闭环频率响应、阶跃响应或者正弦波响应选项运行SPICE电气模拟,以对设计进行分析。可对这些选项的输入条件进行调整,以对不同的输出结果进行评估。
-
汽车测试网V课堂
-
微信公众号
-
汽车测试网手机站
最新资讯
-
Plus为自动驾驶卡车功能添加了H.E.L.P.警报
2024-12-23 17:18
-
美国能源部发布最新版氢计划
2024-12-23 17:16
-
系统级封装(SiP)在新能源汽车领域的应用
2024-12-23 08:51
-
车载通信框架 --- 智能汽车车载通信架构浅
2024-12-23 08:40
-
全国首例!武汉车网智联公司完成智能网联测
2024-12-23 08:39