揭秘长城汽车是如何控制翼子板表面质量缺陷
翼子板表面质量缺陷描述
图1 翼子板缺陷位置
图1所示表面质量缺陷出现在翼子板上部与发动机盖搭接的边缘平面处,用150mm长油石条打磨后,翼子板表面表现为多处不规则凹坑,经电泳、喷漆后在整车上观看,会发现明显的光影扭曲,属于消费者不可接受的表面外观质量问题。
缺陷问题原因分析
零件造型
由于此类型的翼子板造型平缓,深度约150mm,在拉深过程中缺陷位置的材料主要受到压料面提供的拉应力,所受的横向拉应力远小于深度方向的拉应力,可以忽略不计,此位置极易出现起皱现象,如图2所示。
图2 零件造型分析
拉深工艺分析
根据零件造型设计拉深工艺,脱模角在满足成形性能的前提下应尽量小,以提高零件成形所需的拉应力,拉深深度则以零件翻边区域展开后尽量在凹模口以内为原则,如图3A-A剖面所示。这样的拉深工艺设计虽节省板料,但拉深过程中压料面的进料不均衡,会造成传力区的板料发生轻微褶皱,最终导致零件区域出现波浪。由于不能提供足够的横向拉应力,零件后期成形达不到理想状态,虽然成形到底时模具上、下型面闭合,上、下型面会压紧板料,但板料自身的回弹会使缺陷再现仍不能消除。
图3 拉深工艺
翻边工艺分析
模具采用侧翻边结构,为防止压料芯压伤零件,压料芯采用整体式,侧翻边结构安装氮气弹簧辅助压料芯提供侧向压料力。但氮气弹簧只能通过压料芯导板的装配间隙,使压料芯向受力方向微量移动来提供压料力,并不稳定,翻边时会导致零件表面出现凹坑,如图4所示。
图4 侧翻边结构
表面质量缺陷解决方案
拉深模修改
原拉深工艺的主要缺点是传力区面积过大,压料面的进料不稳定会影响零件最终的成形,所以需要减小传力区的面积,更改方案为在传力区增加台阶,如图5所示,为使零件成形过程中台阶与板料均匀接触,R1圆角面尽量与压料面平行。
图5 拉深模工艺补充部分增加台阶
拉深过程中板料的传力区被凸模台阶分成上、下两部分,冲压过程中,由于压料面进料不均匀导致的传力区褶皱趋势被下模台阶R2阻断。上模继续下行,上模台阶R1开始与板料接触,又使之增加一条阻断,传力区面积继续减小,把压料面引起的波浪缺陷阻止在台阶以下。由于台阶截面长度大于原工艺截面长度,使这部分板料得到了更大的拉应力,板料拉深得更加充分。
经以上冲压过程分析得知,增加台阶后,传力区的板料成形性能由R1、R2、台阶的高度、宽度4个因素决定(台阶的宽度与高度受原工艺脱模角度限制)。通过CAE软件对台阶R1、R2、高度、宽度4个因素进行各种水平分析,得到各因素、水平对材料应变的影响,如图6所示。高度、宽度对应变的影响最大,R1与R2对应变影响较小,且高度过高时应变反而出现下降(过高时,R1不起作用,导致应变出现下降)。
图6 台阶各个参数对板料应变的影响
经过CAE分析后,各因素采取合理的水平值对拉深模进行加台阶修改,如图7所示。由于工况条件与分析环境的差异,在实际修改时,圆角半径值均比分析值小1mm制造,给调试模具留一部分空间进行微调,更改后的模具调试首件最好开裂或隐裂,以达到最优的拉应力,首件未开裂或隐裂可能会出现拉深不充分的状态且无法直观判断。此方法修改不用更改模具的分模线,材料利用率未发生变化,凸模补焊区域为工艺补充区,未破坏模具零件的型面区域,不会对零件造成补焊压伤,凹模直接加工即可。
图7 更改后拉深模凸模
翻边模修改
为防止由于冲压角度造成的压料力不足,压料芯在侧压料部分采用偏差加工以提供强压,减小压料芯与凸模之间的间隙,以更好地配合侧翻边结构的压料辅助装置。为防止模具零件加工误差、钳工研合所造成的翻边边缘着色率不均匀问题,翻边边缘处偏差0.5mm加工,采用向零过渡的方式制作,零件棱线作为强压过渡的零点以减小研合困难程度,如图8所示。修改后模具成形的零件如图9所示,油石打磨与光影验证均无问题。
图8 压料芯偏差加工
图9 模具修改后成形的零件
成形的零件遇到表面质量缺陷时:
①要对现场拉深件状态与CAE分析结果进行对比,通过对零件拉深筋的调试使生产现场与CAE模拟最大程度地接近;
②确认各工序模具型面研合率状态,查看缺陷区域着色是否均匀;
③各工序确认工序件状态及模具型面是否有凹坑缺陷,尤其是模具零件淬火区域;
④翻边整形模查看翻边凸模的进入顺序,是否会造成材料的单向扭曲;
⑤确认翻边间隙是否均匀。
通过充分排查后才能准确地判断缺陷的起因。
制定修改方案时,首先采用调整拉深筋等均衡材料应变的方案,但如果零件造型等不可改变因素受限,应采用更改成形工艺补充形式等方法阻止缺陷的扩散。
由于模具零件的加工误差,冲床上、下滑块平行误差等实际不良工况条件的存在,成形的零件并不能一次达到理想的状态,需经过现场对模具进行匹配调试。
在模具调试过程中使压料面的进料状态尽量接近分析结果,再根据成形零件的表面质量缺陷制定模具零件偏差加工方案。
- 下一篇:简单分析车架总成后横梁应力测试
- 上一篇:简单分析汽车覆盖件用铝板的成形特性
最新资讯
-
荷兰Zepp氢燃料电池卡车-Europa
2024-12-22 10:13
-
NCACFE -车队油耗经济性报告(2024版)
2024-12-22 10:11
-
R54法规对商用车轮胎的要求(上)
2024-12-22 10:10
-
蔚来ET9数字架构解析
2024-12-22 09:53
-
4G/5G网络新时代的高效紧急呼叫系统NG-eCal
2024-12-20 22:33