首页 > 汽车评测 > 正文

何为底盘调教?怎么调?

2018-04-25 19:32:42·  来源:汽车底盘零件设计  
 
其实,底盘主要包括了悬架、转向、制动等三大块,所谓的调校就是针对这三大块动手的。另外还会涉及到传动系的一些部分,譬如限滑差速器、主减速比的设定等。
我们整天看媒体口中的底盘调校如何如何,大家对这些都是云里雾里的。但是这些测评的共性就是,往往都会提到一点,就是底盘的后期调校重于先天规格,那到底底盘调校是啥呢?

其实,底盘主要包括了悬架、转向、制动等三大块,所谓的调校就是针对这三大块动手的。另外还会涉及到传动系的一些部分,譬如限滑差速器、主减速比的设定等。


首先要搞清楚的一点是,整车的布置、前后轴的质量分配,是底盘设计和调校的先决条件。一切关于底盘的工作,都是在这个基础上进行的。

底盘调校、轮胎先行。在底盘的设计理论里,轮胎永远是最先需要确定的部分。很简单,轮胎是整台车唯一和地面接触的一部分。

悬架

悬架是最为直接影响到整车的操控特性以及滤震水平的部分。悬架的调校可以说是在设计阶段就已经开始了。这包括了两个部分:运动几何设计、静态定位参数以及弹簧、阻尼等元件参数的调校。



首先解释一下什么叫悬架的运动几何。由于结构的限制,悬架的跳动,一般会有相对固定的轨迹。这个轨迹的控制变化,实际上决定了很多东西,包括整台车的动态特性,也就是通常媒体所说的车辆在极限操控时候的“性格”。这是在设计阶段就要确定下来的东西,一旦设计定型,硬点封锁,整个悬架的运动几何就基本决定了,除非通过后期的深度改装,通过重新制作副车架的方式修改硬点,当然那也就相当于整台车的悬架重新设计了。

悬架设计的一个比较理想的状态是:尽可能通过悬架几何去控制侧倾,使得弹簧阻尼等能够设计的尽可能软,这样一来就能够实现过弯控制侧倾以及滤震的兼顾。实际上要做到这样并不是不可以,但是通过几何变化控制侧倾的同时,也有可能会发生轮胎偏磨过于严重,加速轮胎损耗、手感变化不线性等结果,所以只能做到尽可能地兼顾,一句话:“针无两头利”。



悬架的后期调校,主要就集中在两部分:

静态定位参数:包括主销内倾、轮胎倾角、轮胎束角、偏置距等。
弹簧、阻尼等悬架元件的参数的调节。

弹性元件主要就是刚度,但是如果你觉得弹性元件仅仅就是那个大大的螺旋弹簧,那你就太幼稚了,弹簧仅仅是冰山一角。轮胎、横向稳定杆(防倾杆)、悬置(也就是连接主副车架、悬架构件之间的衬套)、乃至半独立悬架的扭力梁...这些都是影响到这一弹性元件的刚度的因素。

再来说说阻尼,阻尼包括高速阻尼和低速阻尼,其中又分为压缩阻尼和回弹阻尼。这是决定滤震能力的一个重要因素。一般来说,高速阻尼的调校对一些诸如高速砂石、瓦砾、减速带等突变的不平路面的影响比较大,低速阻尼的调校对整车入弯、出弯时候的动态变化的影响比较大。这两者是会相互影响的,因为调节阻尼的办法,多数都是通过改变避震器内部的液体的流动特性、调节内部阀门的大小等物理方法,很难做到将这两种阻尼区别对待。

学过振动力学的人都知道,阻尼的调整是要配合弹性元件的刚度一起来的。这也是为什么在悬架调校上“针无两头利”的缘故。像法系车多数都是在开的慢的时候,晃的像大船一样,但是开快了之后反而会感觉会很稳,这就是它们在阻尼调校方面的癖好,这种癖好是跟它们国家的路况以及整体风格取向有关的。

转向


转向主要能够调节的地方有三个:

1、转向比:方向盘打多少角度,转向横拉杆就有多少位移,这两者之间的比例关系,但是这个实际上应该是在设计的时候决定的,假如你对转向幅度不满意,想自己调整的话,除非更换转向机;

2、转向梯形的几何设计:最直接的调整就是转向连杆的长度。这一项可以通过调节转向横拉杆的长度进行后期调整;

3、车轮的定位参数:对转向有所影响的主要在于主销内倾、前轮前束等。

制动

制动的调校主要是基于整车的轴荷分配来进行的,所以一般来说,如果整车质量或者前后轴的重量分配比例发生了变化,这部分就要跟着调校了。但是刹车的调节方面相较于前面的悬架、转向来说,理论上更简单一些,包括下面几个部分:

1、 制动力:通过修改制动踏板、调节刹车皮软硬以及刹车卡钳的制动力度来调节制动力。

2、 制动力前后分配:通过修改制动轮缸等部位的设计,调节制动力前后比例分配,有的车型的制动轮缸的杠杆比是可以调节的。

3、 制动的热衰退性能:除了使用更好更耐艹的刹车材质之外,还有一个有力的手段就是改善制动系统的散热,譬如通过修改轮辋形状、刹车碟上设计通风槽和通风孔、增加特殊的通风管道、通过修改空力套件调整车轮边的气动特性等手段来实现。

底盘调校除去主要的悬架、转向、制动三大件以外,还涉及到一个很重要的部分,就是传动系统。因为很多性能车,都装有左右轮间的限滑差速器,甚至诸如三菱EVO、斯巴鲁STI这样的四驱性能车还有轴间差速器,差速器之间的锁止比例,不但决定了前后动力的分配,而且还通过动力的响应,影响了过弯时车身的动态,所以也是关于传动系统中限滑差速器的部分,也是底盘调校的重要一环。

最后要说的是,底盘调校并不是单独说“哪里不行改哪里”的一个简单过程,而是一个“牵一发而动全身”,环环相扣的过程。这里说的这么多,仅仅是一些细节的调节理论和方法。而真正的底盘调校,对于量产车来说,是一个庞大冗杂的工程,包括了无数次的动态仿真、无数次的振动台架试验,更多的是数不清的里程的多路况实测,甚至大量的赛道试验。每一个参数的背后,都是日积月累的大数据和大量问题反馈得出的结果。

汽车底盘的组成部分

传动系

传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。汽车发动机所发出的动力靠传动系传递到驱动车轮。

传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。

传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。

下面分别介绍小传动系各个分总成的工作原理以及作用:

离合器:离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。

离合器接合状态离合器切断状态 离合器的功用主要有:

1、保证汽车平稳起步:起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑磨的现象,可以使离合器传出的扭矩由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。

2、便于换档:汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。另一对待啮合齿轮会因二者圆周速度不等而难于啮合。即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。利用离合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。

3、防止传动系过载:汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。由于离合器是靠磨擦力来传递转矩的,所以当传动系内载荷超过磨擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。
变速器:汽车变速器:通过改变传动比,改变发动机曲轴的转拒,适应在起步、加速、行驶以及克服各种道路阻碍等不同行驶条件下对驱动车轮牵引力及车速不同要求的需要。通俗上分为手动变速器(MT),自动变速器(AT), 手动/自动变速器,无级式变速器。

传动轴:传动轴总成由外万向节(RF节)、内万向节(VL节)和花键轴组成,RF节和VL节均为球笼式等速万向节。VL节用螺栓与差速器传动轴凸缘相连接,RF节通过外星轮端部的花键轴与前轮相连接,左、右前轮分别由1根等速万向节传动轴驱动。

主减速器:主减速器是汽车传动系中减小转速、增大扭矩的主要部件。对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。

汽车正常行驶时,发动机的转速通常在2000至3000r/min左右,如果将这么高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需很大,而齿轮副的传动比越大,两齿轮的半径比也越大,换句话说,也就是变速箱的尺寸会越大。另外,转速下降,而扭矩必然增加,也就加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可使主减速器前面的传动部件如变速箱、分动器、万向传动装置等传递的扭矩减小,也可变速箱的尺寸质量减小,操纵省力。 现代汽车的主减速器,广泛采用螺旋锥齿轮和双曲面齿轮。双曲面齿轮工作时,齿面间的压力和滑动较大,齿面油膜易被破坏,必须采用双曲面齿轮油润滑,绝不允许用普通齿轮油代替,否则将使齿面迅速擦伤和磨损,大大降低使用寿命。

差速器:驱动桥两侧的驱动轮若用一根整轴刚性连接,则两轮只能以相同的角速度旋转。这样,当汽车转向行驶时,由于外侧车轮要比内侧车轮移过的距离大,将使外侧车轮在滚动的同时产生滑拖,而内侧车轮在滚动的同时产生滑转。即使是汽车直线行驶,也会因路面不平或虽然路面平直但轮胎滚动半径不等(轮胎制造误差、磨损不同、受载不均或气压不等)而引起车轮的滑动。 车轮滑动时不仅加剧轮胎磨损、增加功率和燃料消耗,还会使汽车转向困难、制动性能变差。为使车轮尽可能不发生滑动,在结构上必须保证各车辆能以不同的角速度转动。通常从动车轮用轴承支承在心轴上,使之能以任何角速度旋转,而驱动车轮分别与两根半轴刚性连接,在两根半轴之间装有差速器。这种差速器又称为轮间差速器。 多轴驱动的越野汽车,为使各驱动桥能以不同角速度旋转,以消除各桥上驱动轮的滑动,有的在两驱动桥之间装有轴间差速器。 现代汽车上的差速器通常按其工作特性分为齿轮式差速器和防滑差速器两大类。 齿轮式差速器当左右驱动轮存在转速差时,差速器分配给慢转驱动轮的转矩大于快转驱动轮的转矩。这种差速器转矩均分特性能满足汽车在良好路面上正常行驶。但当汽车在坏路上行驶时,却严重影响通过能力。例如当汽车的一个驱动轮陷入泥泞路面时,虽然另一驱动轮在良好路面上,汽车却往往不能前进(俗称打滑)。此时在泥泞路面上的驱动轮原地滑转,在良好路面上的车轮却静止不动。这是因为在泥泞路面上的车轮与路面之间的附着力较小,路面只能通过此轮对半轴作用较小的反作用力矩,因此差速器分配给此轮的转矩也较小,尽管另一驱动轮与良好路面间的附着力较大,但因平均分配转矩的特点,使这一驱动轮也只能分到与滑转驱动轮等量的转矩,以致驱动力不足以克服行驶阻力,汽车不能前进,而动力则消耗在滑转驱动轮上。此时加大油门不仅不能使汽车前进,反而浪费燃油,加速机件磨损,尤其使轮胎磨损加剧。有效的解决办法是:挖掉滑转驱动轮下的稀泥或在此轮下垫干土、碎石、树枝、干草等。 为提高汽车在坏路上的通过能力,某些越野汽车及高级轿车上装置防滑差速器。防滑差速器的特点是,当一侧驱动轮在坏路上滑转时,能使大部分甚至全部转矩传给在良好路面上的驱动轮,以充分利用这一驱动轮的附着力来产生足够的驱动力,使汽车顺利起步或继续行驶。

半轴:半轴是差速器与驱动轮之间传递扭矩的实心轴,其内端一般通过花键与半轴齿轮连接,外端与轮毂连接。

现代汽车常用的半轴,根据其支承型式不同,有全浮式和半浮式两种。

1、全浮式半轴只传递转矩,不承受任何反力和弯矩,因而广泛应用于各类汽车上。全浮式半轴易于拆装,只需拧下半轴突缘上的螺栓即可抽出半轴,而车轮与桥壳照样能支持汽车,从而给汽车维护带来方便。

2、半浮式半轴既传递扭矩又承受全部反力和弯矩。它的支承结构简单、成本低,因而被广泛用于反力弯矩较小的各类轿车上。但这种半轴支承拆取麻烦,且汽车行驶中若半轴折断则易造成车轮飞脱的危险。

制动系

汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。

对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。

1、按制动系统的作用分类:制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。

2、按制动操纵能源分类:制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。

3、按制动能量的传输方式:制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。

制动系统一般由制动操纵机构和制动器两个主要部分组成。

1、制动操纵机构:产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,以及制动轮缸和制动管路。

2、制动器:产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。

行驶系

行驶系由汽车的车架、车桥、车轮和悬架等组成。汽车的车架、车桥、车轮和悬架等组成了行驶系,行驶系的功用是:

接受传动轴的动力,通过驱动轮与路面的作用产生牵引力,使汽车正常行驶;
承受汽车的总重量和地面的反力;
缓和不平路面对车身造成的冲击,衰减汽车行驶中的振动,保持行驶的平顺性;
与转向系统配合,保证汽车操纵稳定性。 
分享到:
 
反对 0 举报 0 收藏 0 评论 0
沪ICP备11026917号-25