自动驾驶汽车的本地路径规划:减少碰撞
作者:Hong Wang, Yanjun Huang*, Amir Khajepour, Teng Liu, Yechen Qin,Yubiao Zhang
索引术语—碰撞缓解、潜在碰撞严重性、自动驾驶车辆、路径规划、MPC、安全性
I.介绍
交通事故是世界上最危险的杀手,统计数据显示,每年世界上有数百万人在车辆的车轮下丧生。先进的驾驶辅助系统(ADAS),例如巡航控制,自适应巡航控制(ACC)和应用于高速公路驾驶和自动停车的协同ACC,应用于城市环境的盲角车辆检测,显着提高了安全性[1]。道路上的完全自动驾驶车辆(AV),无需人为干预,可以显着减少因驾驶员的错误、疲劳和醉酒驾驶引起的事故。完全避免交通事故仍然是不现实的,在不可避免的事故情况下,确定如何生成碰撞严重程度最低的路径是一个需要研究和解决的挑战。
根据车辆事故调查[2],大多数事故现场可分为以下几类:前方车辆突然转弯或改变其车道而不显示转向信号;前车突然刹车;障碍物从前面的车辆上掉下来;与行人碰撞或与道路上的静态车碰撞。事故造成的损害取决于障碍物的性质(行人,汽车或道路边界等)、碰撞速度及其配置[3]。对于汽车碰撞,碰撞主要取决于碰撞速度、碰撞方向[4]、车辆不匹配[5]、驾驶员的特征(如性别,年龄和体重[6]),汽车大小[ 7],以及车辆安全装置[8]。
在过去的几十年里,路径规划研究一直是一个热门话题[15]。路径规划采用了许多技术。这些路径规划方法可以分为三种:基于图搜索的规划器,基于采样的方法和内插曲线规划器。在基于图形搜索的规划器的范围内,Dijkstra算法是一种基于图形搜索的算法,可以在图形中找到单源最短路径[16]; A *算法是一种基于图形搜索的算法,由于实现启发式算法,因而可以实现快速节点搜索[17];并且状态点阵算法使用具有状态网格的规划区域的离散表示[18]。概率路线图方法(PRM)[19]和快速探索随机树(RRT)[20]是基于抽样的规划者最常用的方法。插值曲线规划器实现了路径平滑和曲线生成的不同技术,例如直线和圆[21],回旋曲线和多项式曲线。
近年来,基于路径优化的技术已经成为最先进的AV路径规划方法,[ 9 ]。这项技术的核心是将路径规划问题表述为一个考虑多约束和预期车辆性能的优化问题。模型预测控制(MPC)已被证明非常适合解决路径规划问题,因为它们能够处理多约束和凸问题[10] [22]。此外,MPC以递归方式解决路径优化问题,同时考虑到规划过程中环境状态的更新。因此,MPC用于解决本论文中的路径规划问题。
据我们所知,碰撞缓解研究仍然是路径规划领域研究中的一个空白领域。我们为此合成了一种自动驾驶汽车MPC路径规划控制器,该控制器可以避开障碍物并生成一种具有不可避免的碰撞但可将严重性降到最低的紧急路径。在模型预测控制器中,预测碰撞严重程度、障碍物和道路边界的人工势场、路径跟踪矩阵和其他车辆性能约束被考虑到成本函数中。模拟不同的场景以验证我们提出的控制策略能够生成既可以避开障碍物又可以减轻碰撞严重程度以保持自动车辆的最佳安全性的路径。
本论文研究了自动驾驶车辆的路径规划算法,以便在无法避免碰撞时减轻碰撞严重程度。第II节介绍了碰撞缓解路径规划的控制设计——包括车辆模型、碰撞严重度系数的定义、这里采用的潜在领域代表了路径规划的环境和控制设计。第III节介绍了两个案例研究,以验证拟议的减速路径规划控制策略,然后是第IV节的结论和未来工作。
II.路径规划
本节介绍基于碰撞缓解的自动驾驶车辆路径规划方法的控制设计。该过程包括车辆建模,严重性因子SF的定义,人工势场的引入和用于路径规划的MPC算法。
A.车辆建模
实际上,车辆动力学非常复杂,高保真度模型可能是高度非线性和不连续的。为了设计控制器,使用自行车模型。图1描绘了具有3个自由度的车辆模型图,即纵向,横向和偏航[11]:
图1.车辆自行车模型
车辆相对于全局坐标的运动:
其中,m表示车辆的总质量,是车辆的偏航惯性矩;r,u和v分别是CG的横摆率、纵向的速度和横向速度。分别是C.G.到前、后轴的距离。X和Y是纵向和横向的车辆位置,是车辆的航向角,和表示后轮胎和前轮胎的力,是纵向轮胎力。
具有线性轮胎模型的前轮转向车辆的横向轮胎力可以计算为:
其中是输入转向角,表示前轮的侧滑角,表示后轮胎的侧滑角,和代表前后轮胎的转弯刚度。
B.潜在碰撞严重度指数PCSI的定义
如引言中所述,事故严重程度主要取决于碰撞速度,障碍物特征和碰撞配置(与停止的车辆、具有刚性固定障碍物、或与任何其他车辆的正面碰撞)。本文考虑了三个主要因素:碰撞速度,碰撞角度和两个碰撞车辆的质量比。
1)相对速度ΔV
许多速度相关指标被用来评估潜在的碰撞严重度,包括等效速度、能量等效速度、加速度严重度指数或乘员碰撞速度。根据美国,英国和澳大利亚的碰撞数据分析,与速度有关的碰撞严重程度是ΔV的函数,ΔV是碰撞时之前和之后的车速变化。相反,但本质上相同,在我们的算法中,采用接近速度作为ΔV的定义来测量潜在碰撞严重度指数( PCSI ):
其中,ΔV和D分别是接近速度和障碍车辆与自我车辆之间的距离。
2)相对航向角θ
数据库分析显示,最高碰撞风险发生在1/3重叠碰撞中,而等效障碍速度高于20英里/小时[13]。在上述分析的基础上, 为了便于实现, 我们将自我车辆与车辆障碍物之间的相对角θ定义为每辆车辆的航向角之和。与相对角度θ相关的潜在碰撞严重性指数定义如下:
3)质量比Wo / W
就两辆车坠毁事故的不匹配而言,报告显示轻型卡车车辆的乘客死亡相对风险比乘用车撞车的风险高3至4倍[7]。关于与两种车辆的质量比相关的潜在碰撞严重性指数,我们可以简单地将其定义如下[14]:
其中Wo和W分别是障碍车辆和自我车辆的重量。因此,潜在的总碰撞严重度指数将是:
其中,A、B和C是潜在碰撞严重程度的重量参数,分别与相对速度、相对角度和质量比相关。
C.障碍描述
其中人工势场(PF)、不可穿越(U)、可穿越(UC)和道路(UR))定义的障碍有三种。势场可以计算为PF的总和[23]:
其中索引 i,j和q代表不能越过的障碍,可以跨越的障碍是,表示车道标记。这三种PF的详细介绍如下:
a)不可穿越的障碍物:
不可穿越的障碍物,如车辆或行人,会造成不稳定、损坏车辆或威胁人们的生命,并且是安全距离SD的函数,[ 12 ]:
y其中ai和bi分别是PF的形状和强度参数,Xsi表示与障碍物的纵向安全距离,Ysi是与障碍物的横向安全距离,Xo和Yo是最小纵向和横向距离。为了表示安全时间间隙,u表示自我车辆的速度,uoi是障碍物的速度,θe是朝向彼此的航向角。位于( 20m,2m )的不可穿越障碍物的势场如图2所示:
图2.不可穿越障碍物的PF
b )可穿越障碍物:
指数函数用于定义某些障碍物的PF,例如道路上的小碰撞或一些软垃圾不会对自我车辆造成任何损害:
其中aj和bj是障碍物的形状和强度参数,sj表示类似于计算的障碍物和自我车辆之间的归一化安全距离(12)。位于( 10m,2m )的可穿越障碍物的势场如图3所示。
图3.可穿越障碍物的PF
c)道路边界:
当自我车辆在道路上行驶时,尤其是在高速公路上行驶时,除非驾驶员想要改变车道,否则车辆不能越过道路车道标记。禁止撞击道路隔离带,因为它会导致不稳定或严重的车祸。为了避免不希望的道路交叉,道路边界的PF可以定义为:
其中sRq是距离道路边界的车辆安全距离,Da是距离道路边界的允许距离,q表示右侧或左侧的车道标记,aq是强度参数。
利用二次函数来定义车道标记PF,当安全距离减小时,它们的梯度线性增加,如图4所示。
图4.道路边界的PF
- 下一篇:9月广州噪声源识别培训班
- 上一篇:有效降低传导辐射干扰的技巧有哪些?
最新资讯
-
汽车动力电池系统试验综述
2024-11-16 08:25
-
汽车可靠性前沿技术研讨会在重庆成功召开
2024-11-16 07:33
-
一文讲清AEB误触发的原因及法规要求
2024-11-16 07:30
-
HEAD acoustics下线检测:最高级别的质量保
2024-11-15 17:09
-
新能源公司与哈尔滨理工大学联合研究中心揭
2024-11-15 17:07