自动驾驶汽车的本地路径规划:减少碰撞
D.路径规划的控制设计
本节采用模型预测控制算法进行路径规划。为了达到避障和最低碰撞严重程度的目的,根据目标函数计算出的碰撞严重性因子和人工势场。车辆动态也被认为是最优控制问题。基于上述分析,模型预测控制器可以优化指令跟踪、避障、车辆动态、道路调节,并利用预测值减轻不可避免的碰撞。
假设路径规划模块接受期望车道、速度、障碍物、道路边界和车辆状态的信息。
使用等式( 1 ) - ( 6 ),车辆在全局坐标中的动态可以以状态空间形式写成:
其中,。横向和纵向速度v,u;车辆的航向角和横摆率r。系统输入包括纵向轮胎力FxT和转向角δ。y是包括横向位置和速度的输出矩阵。
包括所需车道和目标纵向速度的所需输出矩阵,表示要跟踪的参考点如下所示:
其中ydes是所需的输出矩阵,包括所需的车辆横向位置Ydes和所需的速度udes。ldes是从右侧开始计算的所需车道索引号。Lw是车道的宽度。MPC的优点之一是它不仅能够处理对输入、状态和输出的限制。因此,包括道路规则、致动器容量约束和车辆动态约束在内的约束都被考虑到MPC问题中。
首先,根据道路规定,公路车辆不应违反最高和最低速度的要求。约束可以表示为:
其中umin和umax表示最小和最大允许速度。
此外,致动器容量被认为是:
其中Reff表示车轮的半径; δmax表示最大转向角;Tmax是最大推进扭矩; △δ是一步中转向角的变化率,△δmax是其容量。纵向载荷传递效率包含在轮胎力椭圆约束中:
其中FxT_max表示最大总纵向轮胎力。Fyf0_max和Fyr0_max表示标称最大横向前后轮胎力。W是车辆的重量, h是C.G.的高度,μ是轮胎 - 路面摩擦系数。成本函数包括势场U,严重性因子SF,所需路径的跟踪,控制输入及其变化以及松弛变量如下所示:
其中t + k表示当前时间t之前的k个步长的预测值。Nc和Np分别表示控制范围和预测范围。是k步的松弛变量向量,表示轮胎力的软约束的惩罚。目标函数包含潜在字段、碰撞严重程度、路径跟踪、输入、输入变化和松弛变量。其中,路径跟踪,输入,输入变化和松弛变量分别加权加权矩阵Q,R,S和用P加权的松弛变量的第一范数。通过(21.a)预测州。公式(21.b)生成输出,其中C是输出,D是前馈矩阵。在(21.d)中给出了对致动器的约束,车辆速度和轮胎容量约束的相应线性约束,其中ys是软约束变量向量并且还包括以提供对边界违反的许可。对应于致动器约束的松弛变量被设置为零,因为它们不能被违反。线性化约束可以作为(21.c)中输入和状态的函数写入,其中Ds和Cs分别表示前馈和输出矩阵。车速及其违规限制在(21.f)和(21.g)中表示。通过减少(21.h)中的控制输入数量可以降低计算成本,并且控制输入在第一个Nc预测步骤之后每Nrc步骤改变一次。
III.案例分析
自动驾驶车辆和控制器的参数如表I所示。
案例研究1:如图5所示,自我车辆在车道1上以60km / h的速度起动,同时在车道2中间,前方10m处有一辆障碍车辆。1号车道的人行横道已满。然而,道路边界没有隔离带。在这种情况下,碰撞是不可避免的,因为车辆1和行人之间没有足够的空间停车,车道2也不清楚。
图5.案例研究1的示意图
使用工作中描述的方法,自我车辆的横向距离如图6所示。可以看出,车辆选择越过道路边界而不是撞击行人和左侧车辆。速度如图7所示,可以看出自我车辆也采用苛刻的制动来越过道路边界。图8展示了自我车辆的前轮胎力。
图6.自我车辆的横向距离
图7.自我车辆的纵向速度
图8.自我车辆的横向前轮胎力
案例研究2:自我车辆在车道1上以60km / h的速度启动。在车道2的中间有一辆障碍车1,速度为25km / h,最初在X方向上在障碍物前方的10m处。人行横道部分和右侧人行道都被行人占用。与此同时,左侧人行道是空的。设计这样的情况使得自我车辆在停留在道路边界内时不能避开两个障碍物。示意图如图9所示。
图9.案例研究2的示意图
自我车辆的轨迹如图10所示。在这种情况下,自我车辆避免撞击行人并通过进入左车道来最小化事故严重性。图11显示了自我车辆的纵向速度。图12显示了自我车辆的前轮胎力。据我们所知,人类生命的保护是最重要的。仿真结果满足联网和自动驾驶车辆交通道德规则的要求。
图10.自我车辆的横向距离
图11.自我车辆的纵向速度
图12.自我车辆IV的横向前轮胎力。
IV.结论
本文提出了一种用于自动驾驶车辆的路径规划方法,尤其是当碰撞不可避免时,通过产生尽可能减轻碰撞的轨迹。假设运动规划模块从全局规划模块接收期望的车道和速度信息,并且从感知模块接收障碍物和道路边界的信息。本研究采用模型预测控制算法进行路径规划。为了达到避障的目的,将提出的描述障碍物的碰撞严重度因子和人工势场插入到成本函数中,如果避障是不可能的,则为最低碰撞严重度。此外,车辆动态也被考虑到该最优控制问题中以确保所产生的路径的可行性。仿真结果表明,MPC算法能够避开障碍物,并在碰撞不可避免的情况下减轻碰撞。这种拟议的路径规划方法正在进行实地测试,未来应该分析更多的城市情况,例如交通灯处的紧急情况。
致谢
作者要感谢安大略省研究基金会(ORF)和加拿大自然科学与工程研究委员会(NSERC)的慷慨赞助。
参考资料
作者情况:
Hong Wang, Yanjun Huang, Amir Khajepour, Teng Liu and YubiaoZhang are with the Mechanical and Mechatronics Engineering Department,University of Waterloo, Waterloo, ON. N2L 3G1, Canada.
Yechen Qin is with Department of Mechanical and vehicle engineering,
Beijing Institute of Technology.
- 下一篇:9月广州噪声源识别培训班
- 上一篇:有效降低传导辐射干扰的技巧有哪些?
最新资讯
-
荷兰Zepp氢燃料电池卡车-Europa
2024-12-22 10:13
-
NCACFE -车队油耗经济性报告(2024版)
2024-12-22 10:11
-
R54法规对商用车轮胎的要求(上)
2024-12-22 10:10
-
蔚来ET9数字架构解析
2024-12-22 09:53
-
4G/5G网络新时代的高效紧急呼叫系统NG-eCal
2024-12-20 22:33